PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (48)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Mice Lacking the Immediate Early Gene Egr3 Respond to the Anti-Aggressive Effects of Clozapine Yet are Relatively Resistant to its Sedating Effects 
Immediate early genes (IEGs) of the early growth response gene (Egr) family are activated in the brain in response to stress, social stimuli, and administration of psycho-active medications. However, little is known about the role of these genes in the biological or behavioral response to these stimuli. Here we show that mice lacking the IEG transcription factor Egr3 (Egr3–/– mice) display increased aggression, and a decreased latency to attack, in response to the stressful social stimulus of a foreign intruder. Together with our findings of persistent and intrusive olfactory-mediated social investigation of conspecifics, these results suggest increased impulsivity in Egr3–/– mice. We also show that the aggression of Egr3–/– mice is significantly inhibited with chronic administration of the antipsychotic medication clozapine. Despite their sensitivity to this therapeutic effect of clozapine, Egr3–/– mice display a marked resistance to the sedating effects of acute clozapine compared with WT littermate controls. This indicates that the therapeutic, anti-aggressive action of clozapine is separable from its sedating activity, and that the biological abnormality resulting from loss of Egr3 distinguishes these different mechanisms. Thus Egr3–/– mice may provide an important tool for elucidating the mechanism of action of clozapine, as well as for understanding the biology underlying aggressive behavior. Notably, schizophrenia patients display a similar decreased susceptibility to the side effects of antipsychotic medications compared to non-psychiatric controls, despite the medications producing a therapeutic response. This suggests the possibility that Egr3–/– mice may provide insight into the neurobiological abnormalities underlying schizophrenia.
doi:10.1038/sj.npp.1301505
PMCID: PMC4621766  PMID: 17637609
immediate early gene; Egr3; clozapine; behavior; stress; schizophrenia
2.  SARM1 activation triggers axon degeneration locally via NAD+ destruction 
Science (New York, N.Y.)  2015;348(6233):453-457.
Axon degeneration is an intrinsic self-destruction program that underlies axon loss during injury and disease. Sterile alpha and TIR motif containing 1 (SARM1) protein is an essential mediator of axon degeneration. We report that SARM1 initiates a local destruction program involving rapid breakdown of NAD+ after injury. We used an engineered protease-sensitized SARM1 to demonstrate that SARM1 activity is required after axon injury to induce axon degeneration. Dimerization of the Toll-Interleukin Receptor (TIR) domain of SARM1 alone was sufficient to induce locally-mediated axon degeneration. Formation of the SARM1 TIR dimer triggered rapid breakdown of NAD+, whereas SARM1-induced axon destruction could be counteracted by increased NAD+ synthesis. SARM1-induced depletion of NAD+ may explain the potent axon protection in Wallerian Degeneration slow (Wlds) mutant mice.
doi:10.1126/science.1258366
PMCID: PMC4513950  PMID: 25908823
3.  Metabolic regulator LKB1 plays a crucial role in Schwann cell-mediated axon maintenance 
Nature neuroscience  2014;17(10):1351-1361.
Summary
Schwann cells (SCs) promote axonal integrity independently of myelination by poorly understood mechanisms. Current models suggest that SC metabolism is critical for this support function and that SC metabolic deficits may lead to axonal demise. The LKB1-AMPK kinase pathway targets multiple downstream effectors including mTOR and is a key metabolic regulator implicated in metabolic diseases. We show through integrative molecular, structural, and behavioral characterization of SC-specific mutant mice that LKB1 activity is central to axon stability, whereas AMPK and mTOR in SCs are largely dispensable. The degeneration of axons in LKB1-mutants is most dramatic in unmyelinated small sensory fibers, whereas motor axons are relatively spared. LKB1 deletion in SCs leads to abnormalities in nerve energy and lipid homeostasis, and increased lactate release. The latter acts in a compensatory manner to support distressed axons. LKB1 signaling is essential for SC-mediated axon support, a function that may be dysregulated in diabetic neuropathy.
doi:10.1038/nn.3809
PMCID: PMC4494117  PMID: 25195104
4.  Mitochondrial Dysfunction Induces Sarm1-Dependent Cell Death in Sensory Neurons 
The Journal of Neuroscience  2014;34(28):9338-9350.
Mitochondrial dysfunction is the underlying cause of many neurological disorders, including peripheral neuropathies. Mitochondria rely on a proton gradient to generate ATP and interfering with electron transport chain function can lead to the deleterious accumulation of reactive oxygen species (ROS). Notably, loss of mitochondrial potential precedes cellular demise in several programmed cell destruction pathways, including axons undergoing Wallerian degeneration. Here, we demonstrate that mitochondrial depolarization triggers axon degeneration and cell death in primary mouse sensory neurons. These degenerative events are not blocked by inhibitors of canonical programmed cell death pathways such as apoptosis, necroptosis, and parthanatos. Instead, the axodestructive factor Sarm1 is required for this axon degeneration and cell death. In the absence of Sarm1, the mitochondrial poison CCCP still induces depolarization of mitochondria, ATP depletion, calcium influx, and the accumulation of ROS, yet cell death and axon degeneration are blocked. The survival of these neurons despite the accumulation of ROS indicates that Sarm1 acts downstream of ROS generation. Indeed, loss of Sarm1 protects sensory neurons and their axons from prolonged exposure to ROS. Therefore, Sarm1 functions downstream of ROS to induce neuronal cell death and axon degeneration during oxidative stress. These findings highlight the central role for Sarm1 in a novel form of programmed cell destruction that we term sarmoptosis.
doi:10.1523/JNEUROSCI.0877-14.2014
PMCID: PMC4087211  PMID: 25009267
axon; cell death; degeneration; mitochondria; reactive oxygen species; Sarm1
5.  Aberrant Schwann Cell Lipid Metabolism Linked to Mitochondrial Deficits Leads to Axon Degeneration and Neuropathy 
Neuron  2013;77(5):886-898.
Summary
Mitochondrial dysfunction is a common cause of peripheral neuropathy. Much effort has been devoted to examining the role played by neuronal/axonal mitochondria, but how mitochondrial deficits in peripheral nerve glia (Schwann cells, SCs) contribute to peripheral nerve diseases remains unclear. Here, we investigate a mouse model of peripheral neuropathy secondary to SC mitochondrial dysfunction (Tfam-SCKOs). We show that disruption of SC mitochondria activates a maladaptive integrated stress response through actions of heme-regulated inhibitor kinase (HRI), and causes a shift in lipid metabolism away from fatty acid synthesis toward oxidation. These alterations in SC lipid metabolism result in depletion of important myelin lipid components as well as in accumulation of acylcarnitines, an intermediate of fatty acid β-oxidation. Importantly, we show that acylcarnitines are released from SCs and induce axonal degeneration. A maladaptive integrated stress response as well as altered SC lipid metabolism are thus underlying pathological mechanisms in mitochondria-related peripheral neuropathies.
doi:10.1016/j.neuron.2013.01.012
PMCID: PMC3594792  PMID: 23473319
TFAM; sulfatides; cerebrosides; acylcarnitines; integrated stress response; heme-regulated inhibitor kinase; eukaryotic elongation factor 2 alpha; diabetic neuropathy
6.  Sarm1-Mediated Axon Degeneration Requires Both SAM and TIR Interactions 
The Journal of Neuroscience  2013;33(33):13569-13580.
Axon degeneration is an evolutionarily conserved pathway that eliminates damaged or unneeded axons. Manipulation of this poorly understood pathway may allow treatment of a wide range of neurological disorders. In an RNAi-based screen performed in cultured mouse DRG neurons, we observed strong suppression of injury-induced axon degeneration upon knockdown of Sarm1 [SARM (sterile α-motif-containing and armadillo-motif containing protein)]. We find that a SARM-dependent degeneration program is engaged by disparate neuronal insults: SARM ablation blocks axon degeneration induced by axotomy or vincristine treatment, while SARM acts in parallel with a soma-derived caspase-dependent pathway following trophic withdrawal. SARM is a multidomain protein that associates with neuronal mitochondria. Deletion of the N-terminal mitochondrial localization sequence disrupts SARM mitochondrial localization in neurons but does not alter its ability to promote axon degeneration. In contrast, mutation of either the SAM (sterile α motif) or TIR (Toll-interleukin-1 receptor) domains abolishes the ability of SARM to promote axonal degeneration, while a SARM mutant containing only these domains elicits axon degeneration and nonapoptotic neuronal death even in the absence of injury. Protein–protein interaction studies demonstrate that the SAM domains are necessary and sufficient to mediate SARM–SARM binding. SARM mutants lacking a TIR domain bind full-length SARM and exhibit strong dominant-negative activity. These results indicate that SARM plays an integral role in the dismantling of injured axons and support a model in which SAM-mediated multimerization is necessary for TIR-dependent engagement of a downstream destruction pathway. These findings suggest that inhibitors of SAM and TIR interactions represent therapeutic candidates for blocking pathological axon loss and neuronal cell death.
doi:10.1523/JNEUROSCI.1197-13.2013
PMCID: PMC3742939  PMID: 23946415
7.  Protection of Mouse Retinal Ganglion Cell Axons and Soma from Glaucomatous and Ischemic Injury by Cytoplasmic Overexpression of Nmnat1 
Purpose.
The Wlds mutation affords protection of retinal ganglion cell (RGC) axons in retinal ischemia and in inducible and hereditary preclinical models of glaucoma. We undertook the present study to determine whether the Nmnat1 portion of the chimeric protein provides axonal and somatic protection of RGCs in models of ischemia and glaucoma, particularly when localized to nonnuclear regions of the cell.
Methods.
The survival and integrity of RGC axons and soma from transgenic mice with confirmed cytoplasmic overexpression of Nmnat1 in retina and optic nerve (cytNmnat1-Tg mice) were examined in the retina and postlaminar optic nerve 4 days following acute retinal ischemia, and 3 weeks following the chronic elevation of intraocular pressure.
Results.
Ischemia- and glaucoma-induced disruptions of proximal segments of RGC axons that comprise the nerve fiber layer in wild-type mice were both robustly abrogated in cytNmnat1-Tg mice. More distal portions of RGC axons within the optic nerve were also protected from glaucomatous disruption in the transgenic mice. In both disease models, Nmnat1 overexpression in extranuclear locations significantly enhanced the survival of RGC soma.
Conclusions.
Overexpression of Nmnat1 in the cytoplasm and axons of RGCs robustly protected against both ischemic and glaucomatous loss of RGC axonal integrity, as well as loss of RGC soma. These findings reflect the more pan-cellular protection of CNS neurons that is realized by cytoplasmic Nmnat1 expression, and thus provide a therapeutic strategy for protecting against retinal neurodegeneration, and perhaps other CNS neurodegenerative diseases as well.
This study demonstrates that Nmnat1 overexpression targeted to the cytoplasm affords protection of retinal ganglion cell soma and axons from acute ischemic injury and chronic glaucomatous neurodegeneration; thus, this enzyme could be a therapeutic target for treating these diseases.
doi:10.1167/iovs.12-10861
PMCID: PMC3541947  PMID: 23211826
8.  Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration 
Neuron  2012;74(6):1015-1022.
Here we demonstrate that the dual leucine zipper kinase (DLK) promotes robust regeneration of peripheral axons following nerve injury in mice. Peripheral axon regeneration is accelerated by prior injury, however DLK KO neurons do not respond to a preconditioning lesion with enhanced regeneration in vivo or in vitro. Assays for activation of transcription factors in injury-induced pro-regenerative pathways reveal that loss of DLK abolishes upregulation of p-STAT3 and p-cJun in the cell body following axonal injury. DLK is not required for the phosphorylation of STAT3 at the site of nerve injury, but is necessary for retrograde transport of p-STAT3 to the cell body. These data demonstrate that DLK enhances regeneration by promoting a retrograde injury signal that is required for the activation of the neuronal pro-regenerative program.
doi:10.1016/j.neuron.2012.04.028
PMCID: PMC3383631  PMID: 22726832
9.  The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction 
Cell reports  2013;3(5):1422-1429.
Summary
Axon degeneration is an evolutionarily conserved process that drives the loss of damaged axons and is an early event in many neurological disorders, and so it is important to identify the molecular constituents of this poorly understood mechanism. Here we demonstrate that the Phr1 E3 ubiquitin ligase is a central component of this axon degeneration program. Loss of Phr1 results in prolonged survival of severed axons both in the peripheral and central nervous systems, as well as preservation of motor and sensory nerve terminals. Phr1 depletion increases the axonal level of the axon survival molecule nicotinamide mononucleotide adenyltransferase 2 (NMNAT2), and NMNAT2 is necessary to mediate Phr1-dependent axon stability. The profound long-term protection of peripheral and central mammalian axons following Phr1 deletion suggests that pharmacological inhibition of Phr1 function may be an attractive therapeutic candidate for ameliorating axon loss in neurological disease.
doi:10.1016/j.celrep.2013.04.013
PMCID: PMC3671584  PMID: 23665224
10.  Clinical Genomicist Workstation 
The use of NextGen Sequencing clinically necessitates the need for informatics tools that support the complete workflow from sample accessioning to data analysis and reporting. To address this need we have developed Clinical Genomicist Workstation (CGW). CGW is a secure, n-tiered application where web browser submits requests to application servers that persist the data in a relational database. CGW is used by Washington University Genomic and Pathology Services for clinical genomic testing of many cancers. CGW has been used to accession, analyze and sign out over 409 cases since November, 2011. There are 22 ordering oncologists and 7 clinical genomicists that use the CGW. In summary, CGW a ‘soup-to-nuts’ solution to track, analyze, interpret, and report clinical genomic diagnostic tests.
PMCID: PMC3814481  PMID: 24303327
11.  An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury 
BMC Genomics  2013;14:84.
Background
The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets.
Results
In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery.
Conclusions
This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs.
doi:10.1186/1471-2164-14-84
PMCID: PMC3599357  PMID: 23387820
Transcriptional regulatory network; MicroRNA regulatory network; Myelination; Schwann cells
12.  Assembly and maintenance of nodes of Ranvier rely on distinct sources of proteins and targeting mechanisms 
Neuron  2012;73(1):92-107.
Summary
We have investigated the source(s) and targeting of components to PNS nodes of Ranvier. We show adhesion molecules are diffusible within the axon membrane and accumulate at forming nodes from local axonal sources. In contrast, ion channels and cytoskeletal components exhibit limited planar mobility and require transport to the node. We have characterized further targeting of NF186, an axonal adhesion molecule, which pioneers node formation. NF186 redistributes to nascent nodes from a mobile, surface pool. This initial accumulation, and clearance from the internode require extracellular interactions whereas subsequent targeting to mature nodes, i.e. those flanked by paranodal junctions, requires intracellular interactions. After incorporation into the node, NF186 is immobile, stable, and promotes node integrity. Thus nodes assemble from two sources: adhesion molecules, which initiate assembly, accumulate by diffusion trapping via interactions with Schwann cells whereas ion channels and cytoskeletal components accumulate via subsequent transport. In mature nodes, components turnover slowly and are replenished via transport.
doi:10.1016/j.neuron.2011.10.016
PMCID: PMC3448493  PMID: 22243749
13.  The AMPK β2 Subunit Is Required for Energy Homeostasis during Metabolic Stress 
Molecular and Cellular Biology  2012;32(14):2837-2848.
AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.
doi:10.1128/MCB.05853-11
PMCID: PMC3416196  PMID: 22586267
14.  Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration 
The Journal of Neuroscience  2012;32(12):4145-4155.
Summary
Alterations in mitochondrial dynamics (fission, fusion and movement) are implicated in many neurodegenerative diseases, from rare genetic disorders such as Charcot-Marie-Tooth disease, to common conditions including Alzheimer’s disease. However, the relationship between altered mitochondrial dynamics and neurodegeneration is incompletely understood. Here we show that disease associated MFN2 proteins suppressed both mitochondrial fusion and transport, and produced classic features of segmental axonal degeneration without cell body death, including neurofilament filled swellings, loss of calcium homeostasis, and accumulation of reactive oxygen species. By contrast, depletion of Opa1 suppressed mitochondrial fusion while sparing transport, and did not induce axonal degeneration. Axon degeneration induced by mutant MFN2 proteins correlated with the disruption of the proper mitochondrial positioning within axons, rather than loss of overall mitochondrial movement, or global mitochondrial dysfunction. We also found that augmenting expression of MFN1 rescued the axonal degeneration caused by MFN2 mutants, suggesting a possible therapeutic strategy for Charcot-Marie-Tooth disease. These experiments provide evidence that the ability of mitochondria to sense energy requirements and localize properly within axons is key to maintaining axonal integrity, and may be a common pathway by which disruptions in axonal transport contribute to neurodegeneration.
doi:10.1523/JNEUROSCI.6338-11.2012
PMCID: PMC3319368  PMID: 22442078
mitochondria; neurodegeneration; Charcot-Marie-Tooth Disease; axonal transport; mitofusin 2
15.  MicroRNAs Modulate Schwann Cell Response to Nerve Injury by Reinforcing Transcriptional Silencing of Dedifferentiation-Related Genes 
The Journal of Neuroscience  2011;31(48):17358-17369.
In the peripheral nervous system, Schwann cells (SCs) surrounding damaged axons undergo an injury response that is driven by an intricate transcriptional program and is critical for nerve regeneration. To examine whether these injury-induced changes in SCs are also regulated posttranscriptionally by miRNAs, we performed miRNA expression profiling of mouse sciatic nerve distal segment after crush injury. We also characterized the SC injury response in mice containing SCs with disrupted miRNA processing due to loss of Dicer. We identified 87 miRNAs that were expressed in mouse adult peripheral nerve, 48 of which were dynamically regulated after nerve injury. Most of these injury-regulated SC miRNAs were computationally predicted to inhibit drivers of SC dedifferentiation/proliferation and thereby re-enforce the transcriptional program driving SC remyelination. SCs deficient in miRNAs manifested a delay in the transition between the distinct differentiation states required to support peripheral nerve regeneration. Among the miRNAs expressed in adult mouse SCs, miR-34a and miR-140 were identified as functional regulators of SC dedifferentiation/proliferation and remyelination, respectively. We found that miR-34a interacted with positive regulators of dedifferentiation and proliferation such as Notch1 and Ccnd1 to control cell cycle dynamics in SCs. miR-140 targeted the transcription factor Egr2, a master regulator of myelination, and modulated myelination in DRG/SC cocultures. Together, these results demonstrate that SC miRNAs are important modulators of the SC regenerative response after nerve damage.
doi:10.1523/JNEUROSCI.3931-11.2011
PMCID: PMC3388739  PMID: 22131398
16.  Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function 
Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies.
doi:10.1523/JNEUROSCI.0884-11.2011
PMCID: PMC3147283  PMID: 21752989
TFAM; metabolism; mitochondrial dysfunction; axonal degeneration
17.  Differential Regional and Subtype-Specific Vulnerability of Enteric Neurons to Mitochondrial Dysfunction 
PLoS ONE  2011;6(11):e27727.
Mitochondrial dysfunction is a central mediator of disease progression in diverse neurodegenerative diseases that often present with prominent gastrointestinal abnormalities. Gastrointestinal dysfunction in these disorders is related, at least in part, to defects in the enteric nervous system (ENS). The role of mitochondrial deficits in ENS neurodegeneration and their relative contribution to gastrointestinal dysfunction, however, are unclear. To better understand how mitochondrial abnormalities in the ENS influence enteric neurodegeneration and affect intestinal function, we generated mice (Tfam-ENSKOs) with impaired mitochondrial metabolism in enteric neurons and glia through the targeted deletion of the mitochondrial transcription factor A gene (Tfam). Tfam-ENSKO mice were initially viable but, at an early age, they developed severe gastrointestinal motility problems characterized by intestinal pseudo-obstruction resulting in premature death. This gastrointestinal dysfunction was caused by extensive, progressive neurodegeneration of the ENS involving both neurons and glia. Interestingly, mitochondrial defects differentially affected specific subpopulations of enteric neurons and regions of the gastrointestinal tract. Mitochondrial deficiency-related neuronal and glial loss was most prominent in the proximal small intestine, but the first affected neurons, nitrergic inhibitory neurons, had the greatest losses in the distal small intestine. This regional and subtype-specific variability in susceptibility to mitochondrial defects resulted in an imbalance of inhibitory and excitatory neurons that likely accounts for the observed phenotype in Tfam-ENSKO mice. Mitochondrial dysfunction, therefore, is likely to be an important driving force of neurodegeneration in the ENS and contribute to gastrointestinal symptoms in people with neurodegenerative disorders.
doi:10.1371/journal.pone.0027727
PMCID: PMC3218017  PMID: 22110743
18.  Nicotinamide Mononucleotide Adenylyl Transferase-Mediated Axonal Protection Requires Enzymatic Activity But Not Increased Levels of Neuronal Nicotinamide Adenine Dinucleotide 
Axonal degeneration is a hallmark of many neurological disorders. Studies in animal models of neurodegenerative diseases indicate that axonal degeneration is an early event in the disease process, and delaying this process can lead to decreased progression of the disease and survival extension. Overexpression of the Wallerian degeneration slow (Wlds) protein can delay axonal degeneration initiated via axotomy, chemotherapeutic agents, or genetic mutations. The Wlds protein consists of the N-terminal portion of the ubiquitination factor Ube4b fused to the nicotinamide adenine dinucleotide (NAD+) biosynthetic enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1). We previously showed that the Nmnat1 portion of this fusion protein was the critical moiety for Wlds-mediated axonal protection. Here, we describe the development of an automated quantitative assay for assessing axonal degeneration. This method successfully showed that Nmnat1 enzymatic activity is important for axonal protection as mutants with reduced enzymatic activity lacked axon protective activity. We also found that Nmnat enzymes with diverse sequences and structures from various species, including Drosophila melanogaster, Saccharomyces cerevisiae, and archaebacterium Methanocaldococcus jannaschii, which encodes a protein with no homology to eukaryotic Nmnat enzymes, all mediate robust axonal protection after axotomy. Besides the importance of Nmnat enzymatic activity, we did not observe changes in the steady-state NAD+ level, and we found that inhibition of nicotinamide phosphoribosyltransferase (Nampt), which synthesizes substrate for Nmnat in mammalian cells, did not affect the protective activity of Nmnat1. These results provide the possibility of a role for new Nmnat enzymatic activity in axonal protection in addition to NAD+ synthesis.
doi:10.1523/JNEUROSCI.5469-08.2009
PMCID: PMC3162248  PMID: 19403820
19.  APP cleavage dependent and independent axonal degeneration programs share a common Nmnat1-sensitive pathway 
Axonal degeneration is a hallmark of many debilitating neurological disorders and is thought to be regulated by mechanisms distinct from those governing cell body death. Recently, caspase 6 activation via APP cleavage and activation of DR6 was discovered to induce axon degeneration after NGF withdrawal. We tested whether this pathway is involved in axonal degeneration caused by withdrawal of other trophic support, axotomy or vincristine exposure. Neurturin deprivation, like NGF withdrawal activated this APP/DR6/caspase 6 pathway and resulted in axonal degeneration, however, APP cleavage and caspase 6 activation were not involved in axonal degeneration induced by mechanical or toxic insults. However, loss of surface APP (sAPP) and caspase 6 activation were observed during axonal degeneration induced by dynactin 1(Dctn1) dysfunction, which disrupts axonal transport. Mutations in Dctn1 are associated with motor neuron disease and frontal temporal dementia, thus suggesting that the APP/caspase 6 pathway could be important in specific types of disease-associated axonal degeneration. The NGF deprivation paradigm, with its defined molecular pathway, was used to examine the context of Nmnat-mediated axonal protection. We found that although Nmnat blocks axonal degeneration after trophic factor withdrawal, it did not prevent loss of axon sAPP or caspase 6 activation within the axon, suggesting it acts downstream of caspase 6. These results indicate that diverse insults induce axonal degeneration via multiple pathways and that these degeneration signals converge on a common, Nmnat-sensitive program that is uniquely involved in axonal, but not cell body, degeneration.
doi:10.1523/JNEUROSCI.2939-10.2010
PMCID: PMC3104322  PMID: 20943913
axonal degeneration; Nmnat; Wlds; NGF; apoptosis
20.  Mechanisms of Nucleotide Trafficking during siRNA Delivery to Endothelial Cells using Perfluorocarbon Nanoemulsions 
Biomaterials  2010;31(11):3079-3086.
RNA interference (RNAi) is a useful in vitro research tool, but its application as a safe and effective therapeutic agent may benefit from improved understanding of mechanisms of exogenous siRNA delivery, including cell trafficking and sorting patterns. We report the development of a transfection reagent for siRNA delivery which employs a distinctive non-digestive mode of particle-cell membrane interaction through the formation of a hemifusion complex resulting in lipid-raft transport of cargo to the cytosol, bypassing the usual endosomal nanoparticle uptake pathway. We further demonstrate markedly enhanced efficacy over conventional transfection agents for suppressing endothelial cell expression of upregulated vascular adhesion molecules.
doi:10.1016/j.biomaterials.2010.01.006
PMCID: PMC2827659  PMID: 20092889
21.  Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex 
Mitofusins (Mfn1 and Mfn2) are outer mitochondrial membrane proteins involved in regulating mitochondrial dynamics. Mutations in Mfn2 cause Charcot-Marie-Tooth disease (CMT) type 2A, an inherited disease characterized by degeneration of long peripheral axons, but the nature of this tissue selectivity remains unknown. Here we present evidence that Mfn2 is directly involved in and required for axonal mitochondrial transport, distinct from its role in mitochondrial fusion. Live imaging of neurons cultured from Mfn2 knockout mice, or neurons expressing Mfn2 disease mutants, show that axonal mitochondria spend more time paused and undergo slower anterograde and retrograde movements, indicating an alteration in attachment to microtubule based transport systems. Furthermore, Mfn2 disruption altered mitochondrial movement selectively, leaving transport of other organelles intact. Importantly, both Mfn1 and Mfn2 interact with mammalian Miro (Miro1/Miro2) and Milton (OIP106/GRIF1) proteins, members of the molecular complex that link mitochondria to kinesin motors. Knockdown of Miro2 in cultured neurons produced transport deficits identical to loss of Mfn2, indicating that both proteins must be present at the outer membrane to mediate axonal mitochondrial transport. In contrast, disruption of mitochondrial fusion via knockdown of the inner mitochondrial membrane protein Opa1 had no effect on mitochondrial motility, indicating that loss of fusion does not inherently alter mitochondrial transport. These experiments identify a role for mitofusins in directly regulating mitochondrial transport, and offer important insight into the cell type specificity and molecular mechanisms of axonal degeneration in CMT2A and dominant optic atrophy.
doi:10.1523/JNEUROSCI.6248-09.2010
PMCID: PMC2852190  PMID: 20335458
mitochondria; Charcot-Marie-Tooth Disease; axonal transport; axonopathy; mitofusin 2; axon
22.  RET Signaling is Required for Survival and Normal Function of Non-Peptidergic Nociceptors 
Small unmyelinated sensory neurons classified as nociceptors are divided into two subpopulations based on phenotypic differences including expression of neurotrophic factor receptors. Approximately half of unmyelinated nociceptors express the NGF receptor TrkA and half express the GDNF Family Ligand (GFL) receptor Ret. The function of NGF/TrkA signaling in the TrkA population of nociceptors has been extensively studied and NGF/TrkA signaling is a well established mediator of pain. The GFLs are analgesic in models of neuropathic pain emphasizing the importance of understanding the physiological function of GFL/Ret signaling in nociceptors. However, perinatal lethality of Ret-null mice has precluded the study of the physiological role of GFL/Ret signaling in the survival, maintenance and function of nociceptors in viable mice. We deleted Ret exclusively in nociceptors by crossing nociceptor-specific Nav1.8 Cre and Ret conditional mice to produce Ret-Nav1.8 conditional knock out (CKO) mice. Loss of Ret exclusively in nociceptors results in a reduction in nociceptor number and size indicating Ret signaling is important for the survival and trophic support of these cells. Ret-Nav1.8 CKO mice exhibit reduced epidermal innervation, but normal central projections. In addition, Ret-Nav1.8 CKO mice have increased sensitivity to cold and increased formalin-induced pain, demonstrating that Ret signaling modulates the function of nociceptors in vivo. Enhanced inflammation-induced pain may be mediated by decreased Prostatic Acid Phosphatase (PAP) as PAP levels are markedly reduced in Ret-Nav1.8 CKO mice. The results of this study identify the physiological role of endogenous Ret signaling in the survival and function of nociceptors.
doi:10.1523/JNEUROSCI.5930-09.2010
PMCID: PMC2850282  PMID: 20237269
Ret; neurotrophic factor; GDNF; pain; inflammation; nociceptor
23.  Molecular Identification of Rapidly Adapting Mechanoreceptors and their Developmental Dependence on Ret Signaling 
Neuron  2009;64(6):841-856.
In mammals, the first step in the perception of form and texture is the activation of trigeminal or dorsal root ganglion (DRG) mechanosensory neurons, which are classified as either rapidly (RA) or slowly adapting (SA) according to their rates of adaptation to sustained stimuli. The molecular identities and mechanisms of development of RA and SA mechanoreceptors are largely unknown. We found that the “early Ret+” DRG neurons are RA mechanoreceptors, which form Meissner corpuscles, Pacinian corpuscles and longitudinal lanceolate endings. The central projections of these RA mechanoreceptors innervate layers III through V of the spinal cord and terminate within discrete subdomains of the dorsal column nuclei. Moreover, mice lacking Ret signaling components are devoid of Pacinian corpuscles and exhibit a dramatic disruption of RA mechanoreceptor projections to both the spinal cord and medulla. Thus, the early Ret+ neurons are RA mechanoreceptors and Ret signaling is required for the assembly of neural circuits underlying touch perception.
doi:10.1016/j.neuron.2009.11.003
PMCID: PMC2813518  PMID: 20064391
24.  The Purine Nucleosides Adenosine and Guanosine Delay Axonal Degeneration In Vitro 
Journal of neurochemistry  2009;109(2):595-602.
Axonal degeneration is a key component of many neurodegenerative diseases. Injured axons undergo a program of self-destruction termed Wallerian degeneration that is an active, well-regulated process. The pathways leading to axon fragmentation are uncharacterized, but experiments with wlds mutant mice led to the discovery that overexpression of nicotinamide mononucleotide adenylyltransferase (Nmnat1) or treatment with NAD+ can inhibit axonal degeneration. Here, we show that the purine nucleosides adenosine and guanosine, but not inosine, inhibit injury-induced axonal degeneration in cultured DRG neurons. Axons can be preserved by adding adenosine within 6 hr of the axonal injury. The presence of adenosine was required continuously after the injury to maintain axonal protection. Together these results suggest that adenosine does not alter the neuronal response to injury, but instead inhibits a local axonal pathway necessary for the commitment and/or execution of the axon destructive program.
doi:10.1111/j.1471-4159.2009.06002.x
PMCID: PMC2682787  PMID: 19245660
Axonal Degeneration; adenosine; guanosine; purine nucleosides; Wallerian degeneration
25.  Loss-of-Nkx3.1 Leads to Activation of Discrete Downstream Target Genes during Prostate Tumorigenesis 
Oncogene  2009;28(37):3307-3319.
SUMMARY
The expression of NKX3.1, a transcriptional regulator and tumor suppressor gene in prostate cancer, is downregulated during early stages of prostate tumorigenesis. However, little is known of the alterations in gene expression that occur as a result of this event. We combined laser capture microdissection and gene expression profiling to analyze the molecular consequences of Nkx3.1 loss during prostate cancer initiation using Nkx3.1-deficient mice. This analysis identified a cohort of genes (loss-of-Nkx3.1 signature) that are aberrantly overexpressed during loss-of-Nkx3.1 driven tumor initiation. We studied the expression of these same genes in independent loss-of-Pten and c-myc overexpression prostate adenocarcinoma mouse models. Nkx3.1 expression is lost in prostate epithelial proliferation in both of these mouse models. However, Nkx3.1 loss is an early event of tumor development in the loss-of-Pten model, whereas it occurs at later stages in c-myc transgenic mice. A member of genes of the loss-of-Nkx3.1 signature, like clusterin and quiescin Q6, are highly expressed in prostatic hyperplasia and intraepithelial neoplasia (PIN) lesions that also lack Nkx3.1 in the Pten-deficient prostate, but not in similar lesions in the c-myc transgenic model. Meta-analysis of multiple prostate cancer gene expression datasets including those from loss-of-Nkx3.1, loss-of-Pten, c-myc overexpression, and constitutively active Akt prostate cancer models, further confirmed that genes associated with the loss-of-Nkx3.1 signature integrate with Pten-Akt signaling pathways, but do not overlap with molecular changes associated with the c-myc signaling pathway. In human prostate tissue samples, loss of NKX3.1 expression and corresponding clusterin overexpression are co-localized at sites of prostatic inflammatory atrophy, a possible very early stage of human prostate tumorigenesis. Collectively, these results suggest that the molecular consequences of NKX3.1 loss depend on the epithelial proliferative stage at which its expression is lost and, that alterations in the Pten-Akt-Nkx3.1 axis are important for prostate cancer initiation.
doi:10.1038/onc.2009.181
PMCID: PMC2746257  PMID: 19597465

Results 1-25 (48)