Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  A Case of Idiopathic Hypereosinophilic Syndrome Presenting With Acute Respiratory Distress Syndrome 
Although idiopathic hypereosinophilic syndrome(IHES) commonly involves the lung, it is rarely associated with acute respiratory distress syndrome (ARDS). Here we describe a case of IHES presented in conjunction with ARDS. A 37-year-old male visited the emergency department at Samsung Medical Center, Seoul, Korea, with a chief complaint of dyspnea. Blood tests showed profound peripheral eosinophilia and thrombocytopenia. Patchy areas of consolidation with ground-glass opacity were noticed in both lower lung zones on chest radiography. Rapid progression of dyspnea and hypoxia despite supplement of oxygen necessitated the use of mechanical ventilation. Eosinophilic airway inflammation was subsequently confirmed by bronchoalveolar lavage, leading to a diagnosis of IHES. High-dose corticosteroids were administered, resulting in a dramatic clinical response.
PMCID: PMC3881409  PMID: 24404401
Idiopathic hypereosinophilic syndrome; eosinophilia; acute respiratory distress syndrome; pulmonary thromboembolism
2.  A Case of Hypereosinophilic Syndrome Presenting With Multiorgan Infarctions Associated With Disseminated Intravascular Coagulation 
Thromboembolism is one of the most critical complications of hypereosinophilic syndrome (HES). We report here a case of multi-organ infarctions related to HES. A 23-year-old woman was referred to our hospital with hemoptysis. Not only pulmonary, but also renal and splenic infarctions were detected on computed tomography images. Blood tests showed profound peripheral eosinophilia. She was diagnosed with HES with disseminated intravascular coagulation (DIC). We initiated infusion of corticosteroids, which effectively suppressed peripheral eosinophilia. However, consumptive coagulopathy did not improve and intracerebral hemorrhage related to thrombosis then developed. Addition of interferon-alpha resulted in the correction of the DIC associated with HES.
PMCID: PMC3328734  PMID: 22548210
Hypereosinophilic syndrome; eosinophilia; thromboembolism; disseminated intravascular coagulation; consumptive coagulopathy; interferon-alpha
3.  Comparison of the Causes and Clinical Features of Drug Rash With Eosinophilia and Systemic Symptoms and Stevens-Johnson Syndrome 
Drug rash with eosinophilia and systemic symptoms (DRESS) and the Stevens-Johnson syndrome (SJS) are both severe drug reactions. Their pathogenesis and clinical features differ. This study compared the causes and clinical features of SJS and DRESS.
We enrolled 31 patients who were diagnosed with DRESS (number=11) and SJS (number=20). We retrospectively compared the clinical and laboratory data of patients with the two disorders.
In both syndromes, the most common prodromal symptoms were itching, fever, and malaise. The liver was commonly involved in DRESS. The mucosal membrane of the oral cavity and eyes was often affected in SJS. The most common causative agents in both diseases were antibiotics (DRESS 4/11 (37%), SJS 8/20 (40%)), followed by anticonvulsants (DRESS 3/11 (27%), SJS 7/20 (35%)). In addition, dapsone, allopurinol, clopidogrel, sulfasalazine and non-steroidal anti-inflammatory drugs (NSAIDs) were sporadic causes.
The most common causes of DRESS and SJS were antibiotics, followed by anticonvulsants, NSAIDs and sulfonamides. The increase in the use of antibiotics in Korea might explain this finding.
PMCID: PMC2846735  PMID: 20358026
Drug hypersensitivity; DRESS syndrome; Stevens-Johnson syndrome
4.  Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar 
The Scientific World Journal  2014;2014:209584.
This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.
PMCID: PMC4258323  PMID: 25506063
5.  An Important Role of α-Hemolysin in Extracellular Vesicles on the Development of Atopic Dermatitis Induced by Staphylococcus aureus 
PLoS ONE  2014;9(7):e100499.
Skin barrier disruption and dermal inflammation are key phenotypes of atopic dermatitis (AD). Staphylococcus aureus secretes extracellular vesicles (EVs), which are involved in AD pathogenesis. Here, we evaluated the role of EVs-associated α-hemolysin derived from S. aureus in AD pathogenesis. α-hemolysin production from S. aureus was detected using western blot analyses. The cytotoxic activity of α-hemolysin on HaCaT keratinocytes was evaluated by measuring cell viability after treating cells with soluble and EVs-associated α-hemolysin. To determine the type of cell death, HaCaT keratinocytes were stained with annexin V and 7-AAD. The in vivo effects of α-hemolysin were evaluated by application of soluble and EV-associated α-hemolysin on the mouse skin. The present study showed that increased α-hemolysin was produced by S. aureus colonized on AD patients compared to healthy subjects. α-hemolysin production was also related to AD severity. In addition, EV-associated α-hemolysin was more cytotoxic to HaCaT keratinocytes than soluble α-hemolysin, and α-hemolysin-negative EVs did not induce keratinocyte death. EV-associated α-hemolysin induced necrosis, but soluble α-hemolysin induced apoptosis of keratinocytes. In vivo, skin barrier disruption and epidermal hyperplasia were induced by soluble and EV-associated α-hemolysin. However, AD-like dermal inflammation was only caused by EV-associated α-hemolysin. Moreover, neither skin barrier disruption nor AD-like skin inflammation was induced by α-hemolysin-negative EVs. Taken together, α-Hemolysin secreted from S. aureus, particularly the EV-associated form, induces both skin barrier disruption and AD-like skin inflammation, suggesting that EV-associated α-hemolysin is a novel diagnostic and therapeutic target for the control of AD.
PMCID: PMC4084635  PMID: 24992681
6.  Potential Masking of Airway Eosinophilic Inflammation by Combination Therapy in Asthma 
Long-acting β2 agonists (LABA) may mask ongoing bronchial inflammation, leaving asthmatic patients at greater risk of severe complications. The aim of this study was to compare the effect of combination therapy using low-dose inhaled corticosteroids (ICS) plus LABA on airway inflammation in asthma to the effect of medium-dose ICS alone.
Twenty-four patients with asthma not controlled by low-dose (400 µg per day) budesonide alone were enrolled in this prospective crossover study. Patients were randomized into 2 treatment phases: one receiving medium-dose (800 µg per day) budesonide (ICS phase), and the other receiving a combination therapy of low-dose budesonide/formoterol (360 µg/9 µg per day) delivered by a single inhaler (LABA phase). Each treatment phase lasted for 6 week, after which patients were crossed over. Asthma symptoms, lung function, and airway inflammation were compared between the 2 phases.
Twenty-three patients completed the study; adequate sputum samples were collected from 17 patients. Asthma symptoms and lung function remained similar between the 2 phases. However, the mean sputum eosinophil percentage was higher in the LABA phase than in the ICS phase (5.07±3.82% vs. 1.02±1.70%; P<0.01). Sputum eosinophilia (≥3%) was more frequently observed in the LABA phase than in the ICS phase (six vs. two).
Addition of LABA may mask airway eosinophilic inflammation in asthmatic patients whose symptoms are not controlled with low-dose ICS.
PMCID: PMC3936048  PMID: 24587956
Airway; inflammation; asthma; corticosteroids; beta2-agonists
7.  Association of β2-Adrenergic Receptor Polymorphism with Work-Related Symptoms in Workers Exposed to Wheat Flour 
Yonsei Medical Journal  2011;52(3):488-494.
Our previous study indicated that the presence of wheat-specific IgG1 and IgG4 antibodies was associated with work-related symptoms in workers exposed to wheat flour. We performed this study to investigate the genetic polymorphisms of β2-adrenergic receptors and wheat-specific antibodies in association with the clinical parameters of baker's asthma.
Materials and Methods
In total, 379 subjects working in a single industrial bakery were enrolled in this study. The skin prick test was performed with common inhalant allergens and wheat flour extract. The presence of serum- specific IgE, IgG1, and IgG4 antibodies to wheat flour were determined by ELISA. Whole blood samples were obtained for genotype analysis. Subjects were genotyped with regard to five candidate single nucleotide polymorphisms (SNPs) of the β2-adrenergic receptor gene (ADRB2; -47 T>C, 46 A>G, 79 C>G, 252 G>A, and 523 C>A) using a single-base extension method.
No significant associations were observed between the genotype/allele frequencies of any of the SNPs tested and any clinical parameters. The haplotype of ADRB2 (GAA composed of 46 A>G, 252 G>A, and 523 C>A) was significantly associated with work-related symptoms (p<0.05). Moreover, in subjects with the AG or GG genotype at 46 A>G and haplotype [GAA] of ADRB2, the prevalence rates of wheat-specific IgG1 antibodies and lower respiratory symptoms increased significantly with exposure intensity (both p<0.05).
The findings of the present study suggest that ADRB2 genetic polymorphism may contribute to the development of work-related symptoms in workers exposed to wheat flour, which can lead to baker's asthma.
PMCID: PMC3101046  PMID: 21488193
Baker's asthma; ADRB2 polymorphism; haplotype; specific IgG antibody
8.  Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-γ 
Experimental & Molecular Medicine  2011;43(4):169-178.
Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-γ in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-β, is important in wound healing. We investigated the role of FGF2 in IFN-γ-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-γ-induced emphysema, lung targeted IFN-γ transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 µg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-γ in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-γ but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-γ-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.
PMCID: PMC3085735  PMID: 21297377
asthma; emphysema; fibroblast growth factor 2; interferon-γ; pulmonary eosinophilia
9.  Role of inducible nitric oxide synthase on the development of virus-associated asthma exacerbation which is dependent on Th1 and Th17 cell responses 
Experimental & Molecular Medicine  2010;42(10):721-730.
Asthma is characterized by airway inflammation induced by immune dysfunction to inhaled antigens. Although respiratory viral infections are the most common cause of asthma exacerbation, immunologic mechanisms underlying virus-associated asthma exacerbation are controversial. Clinical evidence indicates that nitric oxide (NO) levels in exhaled air are increased in exacerbated asthma patients compared to stable patients. Here, we evaluated the immunologic mechanisms and the role of NO synthases (NOSs) in the development of virus-associated asthma exacerbation. A murine model of virus-associated asthma exacerbation was established using intranasal challenge with ovalbumin (OVA) plus dsRNA for 4 weeks in mice sensitized with OVA plus dsRNA. Lung infiltration of inflammatory cells, especially neutrophils, was increased by repeated challenge with OVA plus dsRNA, as compared to OVA alone. The neutrophilic inflammation enhanced by dsRNA was partly abolished in the absence of IFN-gamma or IL-17 gene expression, whereas unaffected in the absence of IL-13. In terms of the roles of NOSs, dsRNA-enhanced neutrophilic inflammation was significantly decreased in inducible NOS (iNOS)-deficient mice compared to wild type controls; in addition, this phenotype was inhibited by treatment with a non-specific NOS inhibitor (L-NAME) or an specific inhibitor (1400 W), but not with a specific endothelial NOS inhibitor (AP-CAV peptide). Taken together, these findings suggest that iNOS pathway is important in the development of virus-associated exacerbation of neutrophilic inflammation, which is dependent on both Th1 and Th17 cell responses.
PMCID: PMC2966746  PMID: 20841959
asthma; interferon-γ; interleukin-17; neutrophils; nitric oxide synthase type II; RNA viruses; Th1 cells
10.  IL-12-STAT4-IFN-γ axis is a key downstream pathway in the development of IL-13-mediated asthma phenotypes in a Th2 type asthma model 
Experimental & Molecular Medicine  2010;42(8):533-546.
IL-4 and IL-13 are closely related cytokines that are produced by Th2 cells. However, IL-4 and IL-13 have different effects on the development of asthma phenotypes. Here, we evaluated downstream molecular mechanisms involved in the development of Th2 type asthma phenotypes. A murine model of Th2 asthma was used that involved intraperitoneal sensitization with an allergen (ovalbumin) plus alum and then challenge with ovalbumin alone. Asthma phenotypes, including airway-hyperresponsiveness (AHR), lung inflammation, and immunologic parameters were evaluated after allergen challenge in mice deficient in candidate genes. The present study showed that methacholine AHR and lung inflammation developed in allergen-challenged IL-4-deficient mice but not in allergen-challenged IL-13-deficient mice. In addition, the production of OVA-specific IgG2a and IFN-γ-inducible protein (IP)-10 was also impaired in the absence of IL-13, but not of IL-4. Lung-targeted IFN-γ over-expression in the airways enhanced methacholine AHR and non-eosinophilic inflammation; in addition, these asthma phenotypes were impaired in allergen-challenged IFN-γ-deficient mice. Moreover, AHR, non-eosinophilic inflammation, and IFN-γ expression were impaired in allergen-challenged IL-12Rβ2- and STAT4-deficient mice; however, AHR and non-eosinophilic inflammation were not impaired in allergen-challenged IL-4Rα-deficient mice, and these phenomena were accompanied by the enhanced expression of IL-12 and IFN-γ. The present data suggest that IL-13-mediated asthma phenotypes, such as AHR and non-eosinophilic inflammation, in the Th2 type asthma are dependent on the IL-12-STAT4-IFN-γ axis, and that these asthma phenotypes are independent of IL-4Ralpha-mediated signaling.
PMCID: PMC2928926  PMID: 20592486
asthma; interferon-γ; interleukin-12; interleukin-13; respiratory hypersensitivity; Th2 cells
11.  Toxocariasis Might be an Important Cause of Atopic Myelitis in Korea 
Journal of Korean Medical Science  2009;24(6):1024-1030.
Atopic myelitis is defined as myelitis with atopic diasthesis but the cause is still unknown. Toxocariasis is one of the common causes of hyperIgEaemia that may lead to neurologic manifestations. The purpose of this study was to evaluate the sero-prevalence of Toxocara specific IgG Ab among the atopic myelitis patients. We evaluated the medical records of 37 patients with atopic myelitis whose conditions were diagnosed between March 2001 and August 2007. Among them, the 33 sera were analyzed for specific serum IgG Ab to Toxocara excretory-secretory antigens (TES). All of 37 patients had hyperIgEaemia. Specific IgE to D. pteronyssinus and D. farinae was detected in 22 (64.7%) and 34 (100%) patients, respectively, of the 34 patients. Thirty-one of 33 patients (93.9%) were found to be positive by TES IgG enzyme-linked immunosorbent assay (ELISA). Based on the image findings of eosinophilic infiltrations in the lung and liver, 8 patients had positive results. These results inferred that the prevalence of toxocariasis was high in patients with atopic myelitis. Our results suggest that toxocariasis might be an important cause of atopic myelitis and Toxocara ELISA is essential for evaluating the causes of atopic myelitis.
PMCID: PMC2775847  PMID: 19949655
Myelitis; Atopy; Toxocariasis
12.  P21 Regulates TGF-β1–Induced Pulmonary Responses via a TNF-α–Signaling Pathway 
Transforming growth factor (TGF)-β1 is an essential regulatory cytokine that has been implicated in the pathogenesis of diverse facets of the injury and repair responses in the lung. The types of responses that it elicits can be appreciated in studies from our laboratory that demonstrated that the transgenic (Tg) overexpression of TGF-β1 in the murine lung causes epithelial apoptosis followed by fibrosis, inflammation, and parenchymal destruction. Because a cyclin-dependent kinase inhibitor, p21, is a key regulator of apoptosis, we hypothesized that p21 plays an important role in the pathogenesis of TGF-β1–induced tissue responses. To test this hypothesis we evaluated the effect of TGF-β1 on the expression of p21 in the murine lung. We also characterized the effects of transgenic TGF-β1 in mice with wild-type and null mutant p21 loci. These studies demonstrate that TGF-β1 is a potent stimulator of p21 expression in the epithelial cells and macrophages in the murine lung. They also demonstrate that TGF-β1–induced lung inflammation, fibrosis, myofibroblast accumulation, and alveolar destruction are augmented in the absence of p21, and that these alterations are associated with exaggerated levels of apoptosis and caspase-3 activation. Finally, our studies further demonstrated that TGF-β1 induces p21 via a TNF-α–signaling pathway and that p21 is a negative modulator of TGF-β1–induced TNF-α expression. Collectively, our studies demonstrate that p21 regulates TGF-β1–induced apoptosis, inflammation, fibrosis, and alveolar remodeling by interacting with TNF-α–signaling pathways.
PMCID: PMC2258454  PMID: 17932374
TGF-β; p21; apoptosis; fibrosis; emphysema
13.  Common Whelk (Buccinum undatum) Allergy: Identification of IgE-binding Components and Effects of Heating and Digestive Enzymes 
Journal of Korean Medical Science  2004;19(6):793-799.
In Korea, common whelk (Buccinum undatum) is a popular edible shellfish. The aim of this study was to observe the sensitization rate to common whelk and to characterize its allergens. We carried out skin prick test (SPT) in 1,700 patients with various allergic diseases. Specific IgE were detected by ELISA in the patient sera and ELISA inhibition tests were conducted. IgE-binding components were identified by means of SDS-PAGE and IgE-immunoblotting. The effects of digestive enzymes were evaluated in both raw and thermally treated extracts. SPT to common whelk was positive (≥2+) in 83 (4.9%) patients studied. Twenty-four (38.7%) out of 62 SPT positive patients had high serum specific IgE to common whelk. ELISA inhibition test showed significant inhibitions by abalone as well as by common whelk. IgE-immunoblotting demonstrated three IgE-binding components (40, 71, 82 kDa), which were digested by simulated intestinal fluid and moderately digested by simulated gastric fluid, and the digestibility of allergens remained unchanged after thermal treatment. In conclusion, IgE-sensitization rate to common whelk was 4.9% in allergy patients. IgE-immunoblotting demonstrated three IgE-binding components, which were degraded by digestive enzymes. Further studies are needed to evaluate the clinical significance of the sensitized patients to common whelk.
PMCID: PMC2816299  PMID: 15608387
Mollusca; Shellfish; Common Whelk; Food Hypersensitivity; Skin Tests; Digestion

Results 1-13 (13)