PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (42)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis 
Background & Aims
Inflammation promotes the progression of non-alcoholic steatohepatitis (NASH). Toll-like receptor 4 (TLR4) and TLR9 activation through myeloid differentiation primary response gene 88 (MyD88) and production of mature interleukin-1β (IL-1β) via inflammasome activation contribute to steatohepatitis. Here, we investigated the inter-relationship between TLR signalling and inflammasome activation in dietary steatohepatitis.
Methods
Wild type (WT), TLR4- and MyD88-deficient (KO) mice received methionine-choline-deficient (MCD) or -supplemented (MCS) diets for 5 weeks and a subset was challenged with TLR9 ligand CpG-DNA.
Results
TLR4, TLR9, AIM2 (absent in melanoma 2) and NLRP3 (NLR family pyrin domain containing 3) inflammasome mRNA, and mature IL-1β protein levels were increased in MCD diet-induced steatohepatitis compared to MCS controls. TLR9 stimulation resulted in greater up-regulation of the DNA-sensing AIM2 expression and IL-1β production in livers of MCD compared to MCS diet-fed mice. High mobility group box 1 (HMGB1), a TLR9-activating danger molecule and phospho-HMGB1 protein levels were also increased in livers of MCD diet-fed mice. MyD88- but not TLR4-deficiency prevented up-regulation of AIM2, NLRP3 mRNA and IL-1β protein production in dietary steatohepatitis. Selective MyD88 deficiency either in bone marrow (BM)-derived or non-BM-derived cells attenuated hepatic up-regulation of inflammasome mRNA, caspase-1 activation and IL-1β protein production, but only BM-derived cell-specific MyD88-deficiency attenuated liver injury.
Conclusions
Our data demonstrate that both bone marrow-derived and non-BM-derived cells contribute to inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. We show that AIM2 inflammasome expression and activation are further augmented by TLR9 ligands in dietary steatohepatitis.
doi:10.1111/liv.12537
PMCID: PMC4169310  PMID: 24650018
AIM2; caspase-1; HMGB1; IL-1β; inflammasome; MyD88; NLRP3; non-alcoholic steatohepatitis; TLR4; TLR9
2.  Evolution of the Influenza A Virus Genome during Development of Oseltamivir Resistance In Vitro 
Journal of Virology  2014;88(1):272-281.
Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug treatment, the H274Y resistance mutation fixed reproducibly within the population. The presence of the H274Y mutation in the viral population, at either a low or a high frequency, led to measurable changes in the neuraminidase inhibition assay. Surprisingly, fixation of the resistance mutation was not accompanied by alterations of viral population diversity or differentiation, and oseltamivir did not alter the selective environment. While the neighboring K248E mutation was also a target of positive selection prior to H274Y fixation, H274Y was the primary beneficial mutation in the population. In addition, once evolved, the H274Y mutation persisted after the withdrawal of the drug, even when not fixed in viral populations. We conclude that only selection of H274Y is required for oseltamivir resistance and that H274Y is not deleterious in the absence of the drug. These collective results could offer an explanation for the recent reproducible rise in oseltamivir resistance in seasonal H1N1 IAV strains in humans.
doi:10.1128/JVI.01067-13
PMCID: PMC3911755  PMID: 24155392
3.  Periprosthetic Osteolysis: Characterizing the innate immune response to titanium wear-particles 
Osteolysis of bone following total hip replacements is a major clinical problem. Examination of the areas surrounding failed implants has indicated an increase in the bone-resorption-inducing cytokine, interleukin 1β (IL-1β). NALP3, a NOD-like receptor protein located in the cytosol of macrophages, has been shown to signal the cleavage of pro-IL-1β into its mature, secreted form, IL-1β. Here we show that titanium particles stimulate the NALP3 inflammasome. We demonstrate that titanium induces IL-1β secretion from macrophages and this response is dependent on the expression of components of the NALP3 inflammasome, including NALP3, ASC, and Caspase-1. We also show that titanium particles trigger the recruitment of neutrophils and that this acute inflammatory response is dependent on the expression of the IL-1 receptor and IL-1α/β. Moreover, administration of the IL-1 receptor antagonist (IL-1Ra) diminished neutrophil recruitment in response to titanium particles. Together, these results suggest that titanium particle-induced acute inflammation is due to activation of the NALP3 inflammasome, which leads to increased IL-1β secretion and IL-1-associated signaling, including neutrophil recruitment. Efficacy of IL-1Ra treatment introduces the potential for antagonist based-therapies for implant osteolysis.
doi:10.1002/jor.21149
PMCID: PMC4011639  PMID: 20872576
Titanium; inflammasome; neutrophils; IL-1; NALP3
4.  Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation1 
Polymeric microparticles have been widely investigated as platforms for delivery of drugs, vaccines, and imaging contrast agents, and are increasingly used in a variety of clinical applications. Microparticles activate the inflammasome complex and induce the processing and secretion of IL-1β, a key innate immune cytokine. Recent work suggests that while receptors are clearly important for particle phagocytosis, other physical characteristics especially shape, play an important role in the way microparticles activate cells. We examined the role of particle surface texturing not only on uptake efficiency but also on the subsequent immune cell activation of the inflammasome. Using a method based on emulsion processing of amphiphilic block copolymers, we prepared microparticles with similar overall sizes and surface chemistries, but having either smooth or highly micro-textured surfaces. In vivo, textured (budding) particles induced more rapid neutrophil recruitment to the injection site. In vitro, budding particles were more readily phagocytosed than smooth particles and induced more lipid raft recruitment to the phagosome. Remarkably, budding particles also induced stronger IL-1β secretion than smooth particles, through activation of the NLRP3 inflammasome. These findings demonstrate a pronounced role of particle surface topography in immune cell activation suggesting that shape is a major determinant of inflammasome activation.
doi:10.4049/jimmunol.1200492
PMCID: PMC3646559  PMID: 23427254
5.  T-bet Knockout Prevents Helicobacter felis-Induced Gastric Cancer1 
Helicobacter infection is the primary risk factor for gastric cancer, with the cytokine environment within the gastric mucosa the strongest predictor of disease risk. Elevated TNF-α, IL-1β, and low IL-10 are associated with the highest risk. In this study, we used C57BL/6 mice to identify T-bet as a central regulator of the cytokine environment during Helicobacter felis infection. We infected male and female C57BL/6 and C57BL/6-T-bet knockout (KO) liter mates with H. felis and examined the bacterial colonization, immune response, and mucosal damage at varying time points. T-bet KO mice maintained infection for 15 mo at similar levels to wild-type mice. Infection and immune response did not differ between male and female mice. Despite sustained infection, T-bet KO mice respond with a blunted Th1 response associated with preservation of parietal and chief cells and protection from the development of gastric cancer. Unexpectedly, T-bet KO mice develop a gastric environment that would not be expected based on the phenotype of T-bet KO CD4 cells alone. T-bet KO mice respond to H. felis infection with a markedly blunted IL-1β and TNF-α and elevated IL-10 levels. Activity of this one master regulator modulates the expression of the key gastric mucosal cytokines associated with gastric cancer and may be a target for therapy to restore immune balance clinically in patients at risk for gastric cancer.
doi:10.4049/jimmunol.0900511
PMCID: PMC3966469  PMID: 19535625
6.  Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors1 
The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9, and that non-immune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, like macrophages and conventional dendritic cells, detect infections with herpesviruses. Here we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFI16 is important for induction of IFN-β in human macrophages after infection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as IFI16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.
doi:10.4049/jimmunol.1202749
PMCID: PMC3578088  PMID: 23345332
7.  Type 1 IFN Mediates Cross-Talk between Innate and Adaptive Immunity That Abrogates Transplantation Tolerance1,2 
TLR activation of innate immunity prevents the induction of transplantation tolerance and shortens skin allograft survival in mice treated with costimulation blockade. The mechanism by which TLR signaling mediates this effect has not been clear. We now report that administration of the TLR agonists LPS (TLR4) or polyinosinic:polycytidylic acid (TLR3) to mice treated with costimulation blockade prevents alloreactive CD8+ T cell deletion, primes alloreactive CTLs, and shortens allograft survival. The TLR4- and MyD88-dependent pathways are required for LPS to shorten allograft survival, whereas polyinosinic:polycytidylic acid mediates its effects through a TLR3-independent pathway. These effects are all mediated by signaling through the type 1 IFN (IFN-αβ) receptor. Administration of IFN-β recapitulates the detrimental effects of TLR agonists on transplantation tolerance. We conclude that the type 1 IFN generated as part of an innate immune response to TLR activation can in turn activate adaptive immune responses that abrogate transplantation tolerance. Blocking of type 1 IFN-dependent pathways in patients may improve allograft survival in the presence of exogenous TLR ligands.
PMCID: PMC3896082  PMID: 17982052
8.  Chronic Alcohol-Induced microRNA-155 Contributes to Neuroinflammation in a TLR4-Dependent Manner in Mice 
PLoS ONE  2013;8(8):e70945.
Introduction
Alcohol-induced neuroinflammation is mediated by pro-inflammatory cytokines and chemokines including tumor necrosis factor-α (TNFα), monocyte chemotactic protein-1 (MCP1) and interleukin-1-beta (IL-1β). Toll-like receptor-4 (TLR4) pathway induced nuclear factor-κB (NF-κB) activation is involved in the pathogenesis of alcohol-induced neuroinflammation. Inflammation is a highly regulated process. Recent studies suggest that microRNAs (miRNAs) play crucial role in fine tuning gene expression and miR-155 is a major regulator of inflammation in immune cells after TLR stimulation.
Aim
To evaluate the role of miR-155 in the pathogenesis of alcohol-induced neuroinflammation.
Methods
Wild type (WT), miR-155- and TLR4-knockout (KO) mice received 5% ethanol-containing or isocaloric control diet for 5 weeks. Microglia markers were measured by q-RTPCR; inflammasome activation was measured by enzyme activity; TNFα, MCP1, IL-1β mRNA and protein were measured by q-RTPCR and ELISA; phospho-p65 protein and NF-κB were measured by Western-blotting and EMSA; miRNAs were measured by q-PCR in the cerebellum. MiR-155 was measured in immortalized and primary mouse microglia after lipopolysaccharide and ethanol stimulation.
Results
Chronic ethanol feeding up-regulated miR-155 and miR-132 expression in mouse cerebellum. Deficiency in miR-155 protected mice from alcohol-induced increase in inflammatory cytokines; TNFα, MCP1 protein and TNFα, MCP1, pro-IL-1β and pro-caspase-1 mRNA levels were reduced in miR-155 KO alcohol-fed mice. NF-κB was activated in WT but not in miR-155 KO alcohol-fed mice. However increases in cerebellar caspase-1 activity and IL-1β levels were similar in alcohol-fed miR-155-KO and WT mice. Alcohol-fed TLR4-KO mice were protected from the induction of miR-155. NF-κB activation measured by phosphorylation of p65 and neuroinflammation were reduced in alcohol-fed TLR4-KO compared to control mice. TLR4 stimulation with lipopolysaccharide in primary or immortalized mouse microglia resulted in increased miR-155.
Conclusion
Chronic alcohol induces miR-155 in the cerebellum in a TLR4-dependent manner. Alcohol-induced miR-155 regulates TNFα and MCP1 expression but not caspase-dependent IL-1β increase in neuroinflammation.
doi:10.1371/journal.pone.0070945
PMCID: PMC3739772  PMID: 23951048
9.  Role of Interferon Regulatory Factor 7 in T Cell Responses during Acute Lymphocytic Choriomeningitis Virus Infection 
Journal of Virology  2012;86(20):11254-11265.
Type I interferons (IFNs), predominantly IFN-α and -β, play critical roles in both innate and adaptive immune responses against viral infections. Interferon regulatory factor 7 (IRF7), a key innate immune molecule in the type I IFN signaling pathway, is essential for the type I IFN response to many viruses, including lymphocytic choriomeningitis virus (LCMV). Here, we show that although IRF7 knockout (KO) mice failed to control the replication of LCMV in the early stages of infection, they were capable of clearing LCMV infection. Despite the lack of type I IFN production, IRF7 KO mice generated normal CD4+ T cell responses, and the expansion of naïve CD8+ T cells into primary CD8+ T cells specific for LCMV GP33–41 was relatively normal. In contrast, the expansion of the LCMV NP396-specific CD8+ T cells was severely impaired in IRF7 KO mice. We demonstrated that this defective CD8+ T cell response is due neither to an impaired antigen-presenting system nor to any intrinsic role of IRF7 in CD8+ T cells. The lack of a type I IFN response in IRF7 KO mice did not affect the formation of memory CD8+ T cells. Thus, the present study provides new insight into the impact of the innate immune system on viral pathogenesis and demonstrates the critical contribution of innate immunity in controlling virus replication in the early stages of infection, which may shape the quality of CD8+ T cell responses.
doi:10.1128/JVI.00576-12
PMCID: PMC3457134  PMID: 22875973
10.  C21orf91 Genotypes Correlate With Herpes Simplex Labialis (Cold Sore) Frequency: Description of a Cold Sore Susceptibility Gene 
The Journal of Infectious Diseases  2011;204(11):1654-1662.
(See the editorial commentary by Cunningham and Booth, on pages 1645–7.)
Background. Herpes simplex virus type 1 (HSV-1) infects >70% of the United States population. We identified a 3-megabase region on human chromosome 21 containing 6 candidate genes associated with herpes simplex labialis (HSL, “cold sores”).
Methods. We conducted single nucleotide polymorphism (SNP) scans of the chromosome 21 region to define which of 6 possible candidate genes were associated with cold sore frequency. We obtained the annual HSL frequency for 355 HSV-1 seropositive individuals and determined the individual genotypes by SNPlex for linkage analysis and parental transmission disequilibrium testing (ParenTDT).
Results. Two-point linkage analysis showed positive linkage between cold sore frequency and 2 SNPs within the C21orf91 region, 1 of which is nonsynonymous. ParenTDT analysis revealed a strong association between another C21orf91 SNP, predicted to lie in the 3′ untranslated region, and frequent HSL (P = .0047). C21orf 91 is a predicted open reading frame of unknown function that encodes a cytosolic protein.
Conclusions. We evaluated candidate genes in the cold sore susceptibility region using fine mapping with 45 SNP markers. 2 complementary techniques identified C21orf91 as a gene of interest for susceptibility to HSL. We propose that C21orf91 be designated the Cold Sore Susceptibility Gene-1 (CSSG1).
doi:10.1093/infdis/jir633
PMCID: PMC3203230  PMID: 22039568
11.  Antibodies to cell surface proteins redirect intracellular trafficking pathways 
Antibody-mediated intracellular delivery of therapeutic agents has been considered for treatment of a variety of diseases. These approaches involve targeting cell-surface receptor proteins expressed by tumors or viral proteins expressed on infected cells. We examined the intracellular trafficking of a viral cell-surface-expressed protein, rabies G, with or without binding a specific antibody, ARG1. We found that antibody binding shifts the native intracellular trafficking pathway of rabies G in an Fc-independent manner. Kinetic studies indicate that the ARG1/rabies G complex progressively co-localized with clathrin, early endosomes, late endosomes, and lysosomes after addition to cells. This pathway was different from that taken by rabies G without addition of antibody, which localized with recycling endosomes. Findings were recapitulated using a cellular receptor with a well-defined endogenous recycling pathway. We conclude that antibody binding to cell-surface proteins induces redirection of intracellular trafficking of unbound or ligand bound receptors to a specific degradation pathway. These findings have broad implications for future developments of antibody-based therapeutics.
doi:10.1016/j.yexmp.2011.05.011
PMCID: PMC3315679  PMID: 21819978
Endosomes; degradation; antibody; trafficking; internalization
12.  CD200R1 Supports HSV-1 Viral Replication and Licenses Pro-Inflammatory Signaling Functions of TLR2 
PLoS ONE  2012;7(10):e47740.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.
doi:10.1371/journal.pone.0047740
PMCID: PMC3474780  PMID: 23082204
13.  Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection 
The repair protein trefoil factor 2 promotes Th2 responses to helminth infection and allergens in part by inducing IL-33.
The molecular mechanisms that drive mucosal T helper type 2 (TH2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a TH2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal TH2 responses.
doi:10.1084/jem.20110079
PMCID: PMC3302229  PMID: 22329990
14.  IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice 
The Journal of Clinical Investigation  2012;122(10):3476-3489.
Alcoholic liver disease (ALD) is characterized by steatosis and upregulation of proinflammatory cytokines, including IL-1β. IL-1β, type I IL-1 receptor (IL-1R1), and IL-1 receptor antagonist (IL-1Ra) are all important regulators of the IL-1 signaling complex, which plays a role in inflammation. Furthermore, IL-1β maturation is dependent on caspase-1 (Casp-1). Using IL-1Ra–treated mice as well as 3 mouse models deficient in regulators of IL-1β activation (Casp-1 and ASC) or signaling (IL-1R1), we found that IL-1β signaling is required for the development of alcohol-induced liver steatosis, inflammation, and injury. Increased IL-1β was due to upregulation of Casp-1 activity and inflammasome activation. The pathogenic role of IL-1 signaling in ALD was attributable to the activation of the inflammasome in BM-derived Kupffer cells. Importantly, in vivo intervention with a recombinant IL-1Ra blocked IL-1 signaling and markedly attenuated alcohol-induced liver inflammation, steatosis, and damage. Furthermore, physiological doses of IL-1β induced steatosis, increased the inflammatory and prosteatotic chemokine MCP-1 in hepatocytes, and augmented TLR4-dependent upregulation of inflammatory signaling in macrophages. In conclusion, we demonstrated that Casp-1–dependent upregulation of IL-1β and signaling mediated by IL-1R1 are crucial in ALD pathogenesis. Our findings suggest a potential role of IL-1R1 inhibition in the treatment of ALD.
doi:10.1172/JCI60777
PMCID: PMC3461900  PMID: 22945633
15.  Role of Specific Innate Immune Responses in Herpes Simplex Virus Infection of the Central Nervous System 
Journal of Virology  2012;86(4):2273-2281.
Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.
doi:10.1128/JVI.06010-11
PMCID: PMC3302371  PMID: 22171256
16.  Type I Interferons Protect from Toll-like Receptor 9-Associated Liver Injury and Regulate IL-1 Receptor Antagonist in Mice 
Gastroenterology  2010;140(2):697-708.e4.
Background & Aims
Liver inflammation and injury are mediated by the innate immune response, which is regulated by Toll-like receptors (TLR). Activation of TLR9 induces Type I interferons (IFNs) via the interferon regulatory factor (IRF)-7. We investigated the roles of Type I IFNs in TLR9-associated liver injury in mice.
Methods
Liver injury was induced in wild-type (WT), IRF7-deficient, and IFN-α/s receptor-1 (IFNAR1)-deficient mice by administration of ligands for TLR9 or TLR2. Findings from mice were verified in cultured hepatocytes and liver mononuclear cells, and in vivo experiments using recombinant Type-I IFN and interleukin-1 receptor antagonist (IL-1ra).
Results
Type I IFNs were upregulated during TLR9-associated liver injury in WT mice. IRF7- and IFNAR1-deficient mice, which have disruptions in Type I IFN production or signaling, respectively, had greater amounts of liver damage and inflammation, decreased recruitment of dendritic cells, and increased production of TNF-α by liver mononuclear cells (LMNC). These findings indicate that Type I IFNs have anti-inflammatory activities in liver. The IL-1ra, which is produced by LMNC and hepatocytes, is an IFN-regulated antagonist of the pro-inflammatory cytokine IL-1β; IRF7- and IFNAR1-deficient mice had decreased levels of IL-1ra, compared with WT mice. IL-1ra protected cultured hepatocytes from IL-1β-mediated sensitization to cytotoxicity from TNF-α. In vivo exposure to Type I IFN, which induced IL-1ra, or administration of IL-1ra reduced TLR9-associated liver injury; the protective effect of Type-I IFNs therefore appears to be mediated by IFN-dependent induction of IL-1ra.
Conclusions
Type I IFNs have anti-inflammatory effects mediated by endogenous IL-1ra which regulates the extent of TLR9-induced liver damage. Type I interferon signaling is therefore required for protection from immune-mediated liver injury.
doi:10.1053/j.gastro.2010.08.020
PMCID: PMC3031737  PMID: 20727895
liver disease; immunology; innate immunity; bacterial DNA
17.  Interferon regulatory factor 3 and Type I interferons are protective in alcoholic liver injury in mice via cross-talk of parenchymal and myeloid cells 
Hepatology (Baltimore, Md.)  2011;53(2):649-660.
Alcoholic liver disease (ALD) features increased hepatic exposure to bacterial lipopolysaccharide (LPS). Toll-like receptor-4 (TLR4) recognizes LPS and activates signaling pathways depending on MyD88 or TRIF adaptors. We previously showed that MyD88 is dispensable in ALD. TLR4 induces Type-I interferons (IFN) in MyD88-independent manner that involves interferon regulatory factor-3 (IRF3). We fed alcohol or control diets to wild-type (WT) and IRF3 knock-out (KO) mice, and to mice with selective IRF3 deficiency in liver parenchymal and bone marrow-derived cells. Whole-body IRF3-KO mice were protected from alcohol-induced liver injury, steatosis and inflammation. In contrast to WT or bone-marrow specific IRF3-KO mice, deficiency of IRF3 only in parenchymal cells aggravated alcohol-induced liver injury, associated with increased pro-inflammatory cytokines, lower anti-inflammatory cytokine IL-10 and lower Type-I IFNs compared to WT mice. Co-culture of WT primary murine hepatocytes with liver mononuclear cells (LMNC) resulted in higher LPS-induced IL-10 and IFN-β, and lower TNF-α levels compared to LMNC alone. Type-I IFN was important since co-cultures of hepatocytes with LMNC from Type-I IFN receptor KO mice showed attenuated IL-10 levels compared to control co-cultures from WT mice. We further identified that Type-I IFNs potentiated LPS-induced IL-10 and inhibited inflammatory cytokine production in both murine macrophages and human leukocytes, indicating preserved cross-species effects. These findings suggest that liver parenchymal cells are the dominant source of Type-I IFN in TLR4/IRF3-dependent manner. Further, parenchymal cell-derived Type-I IFNs increase anti-inflammatory and suppress pro-inflammatory cytokines production by LMNC in paracrine manner. In conclusion, our results indicate that IRF3 activation in parenchymal cells and resulting type I IFNs have protective effects in ALD via modulation of inflammatory functions in macrophages. These results suggest potential therapeutic targets in ALD.
doi:10.1002/hep.24059
PMCID: PMC3069538  PMID: 21274885
alcoholic liver disease; toll-like receptor 4; interferons, type I; tumor necrosis factor alpha; interleukin 10
18.  CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone 
PLoS ONE  2012;7(1):e29688.
The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.
doi:10.1371/journal.pone.0029688
PMCID: PMC3258240  PMID: 22253759
19.  Discovery of a novel TLR2 signaling inhibitor with anti-viral activity 
Antiviral research  2010;87(3):295-306.
Blockade of Toll-like receptor (TLR)-mediated inflammatory responses represents a new approach in the development of anti-inflammation therapeutics. In the present study, we have screened for TLR2-mediated inflammation inhibitors from a small molecule compound library using a sensitive cell line stably expressing TLR2, CD14, and an NF-κB-driven-luciferase reporter gene. Lymphocytic choriomeningitis virus (LCMV) was used as a virus model. This arenavirus activates a TLR2/CD14-dependent NF-κB signaling pathway. We have identified 10 potential anti-inflammatory compounds out of 101306 compounds. We further evaluated 1 of these positive compounds, E567. We demonstrated that compound E567 efficiently inhibits both LCMV and Herpes simplex virus 1 (HSV-1) induced cytokine responses in both human and mouse cell cultures. We also demonstrated that E567 inhibits cytokine responses in the mouse. Remarkably, E567 is also capable of inhibiting LCMV replication in mice. This is a new model for developing drugs for use in treating viral illnesses.
doi:10.1016/j.antiviral.2010.06.011
PMCID: PMC2924919  PMID: 20603154
Toll-like receptor (TLR); Lymphocytic choriomeningitis virus (LCMV); compound screening
20.  Mutations in Bone Marrow-Derived Stromal Stem Cells Unmask Latent Malignancy 
Stem Cells and Development  2010;19(8):1153-1166.
Neoplastic epithelia may remain dormant and clinically unapparent in human patients for decades. Multiple risk factors including mutations in tumor cells or the stromal cells may affect the switch from dormancy to malignancy. Gene mutations, including p53 mutations, within the stroma of tumors are associated with a worse clinical prognosis; however, it is not known if these stromal mutations can promote tumors in genetically at-risk tissue. To address this question, ApcMin/+ and ApcMin/+ Rag2−/− mice, which have a predilection to mammary carcinoma (as well as wild-type (wt) mice), received mesenchymal stem cells (MSC) with mutant p53 (p53MSC) transferred via tail vein injection. In the wt mouse, p53MSC circulated in the periphery and homed to the marrow cavity where they could be recovered up to a year later without apparent effect on the health of the mouse. No mammary tumors were found. However, in mice carrying the ApcMin/+ mutation, p53MSC homed to mammary tissue and significantly increased the incidence of mammary carcinoma. Tumor necrosis factor (TNF)-α-dependent factors elaborated from mesenchymal cells converted quiescent epithelia into clinically apparent disease. The increased cancer phenotype was completely preventable with neutralization of TNF-α or by transfer of CD4+ regulatory T cells from immune competent donors, demonstrating that immune competency to regulate inflammation was sufficient to maintain neoplastic dormancy even in the presence of oncogenic epithelial and stromal mutations. The significant synergy between host immunity and mesenchymal cells identified here may restructure treatments to restore an anticancer microenvironment.
doi:10.1089/scd.2009.0439
PMCID: PMC3135253  PMID: 20199238
21.  Assembly and Immunological Properties of Newcastle Disease Virus-Like Particles Containing the Respiratory Syncytial Virus F and G Proteins ▿  
Journal of Virology  2010;85(1):366-377.
Human respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and young children as well as elderly and immunocompromised populations. However, no RSV vaccines are available. We have explored the potential of virus-like particles (VLPs) as an RSV vaccine candidate. VLPs composed entirely of RSV proteins were produced at levels inadequate for their preparation as immunogens. However, VLPs composed of the Newcastle disease virus (NDV) nucleocapsid and membrane proteins and chimera proteins containing the ectodomains of RSV F and G proteins fused to the transmembrane and cytoplasmic domains of NDV F and HN proteins, respectively, were quantitatively prepared from avian cells. Immunization of mice with these VLPs, without adjuvant, stimulated robust, anti-RSV F and G protein antibody responses. IgG2a/IgG1 ratios were very high, suggesting predominantly TH1 responses. In contrast to infectious RSV immunization, neutralization antibody titers were robust and stable for 4 months. Immunization with a single dose of VLPs resulted in the complete protection of mice from RSV replication in lungs. Upon RSV intranasal challenge of VLP-immunized mice, no enhanced lung pathology was observed, in contrast to the pathology observed in mice immunized with formalin-inactivated RSV. These results suggest that these VLPs are effective RSV vaccines in mice, in contrast to other nonreplicating RSV vaccine candidates.
doi:10.1128/JVI.01861-10
PMCID: PMC3014159  PMID: 20980510
22.  Pattern Recognition Receptors and the Innate Immune Response to Viral Infection 
Viruses  2011;3(6):920-940.
The innate immune response to viral pathogens is critical in order to mobilize protective immunity. Cells of the innate immune system detect viral infection largely through germline-encoded pattern recognition receptors (PRRs) present either on the cell surface or within distinct intracellular compartments. These include the Toll-like receptors (TLRs), the retinoic acid-inducble gene I-like receptors (RLRs), the nucleotide oligomerization domain-like receptors (NLRs, also called NACHT, LRR and PYD domain proteins) and cytosolic DNA sensors. While in certain cases viral proteins are the trigger of these receptors, the predominant viral activators are nucleic acids. The presence of viral sensing PRRs in multiple cellular compartments allows innate cells to recognize and quickly respond to a broad range of viruses, which replicate in different cellular compartments. Here, we review the role of PRRs and associated signaling pathways in detecting viral pathogens in order to evoke production of interferons and cytokines. By highlighting recent progress in these areas, we hope to convey a greater understanding of how viruses activate PRR signaling and how this interaction shapes the anti-viral immune response.
doi:10.3390/v3060920
PMCID: PMC3186011  PMID: 21994762
pattern recognition receptor; toll like receptor; nod like receptor; AIM2 like receptor; RIG-I like receptor; cytosolic DNA sensor; inflammasome; interferon; virus
23.  Herpes Simplex Virus Immediate-Early ICP0 Protein Inhibits Toll-Like Receptor 2-Dependent Inflammatory Responses and NF-κB Signaling ▿  
Journal of Virology  2010;84(20):10802-10811.
The discovery of the Toll-like receptors (TLRs) and their importance in the regulation of host responses to infection raised attention to the complex interplay between viral gene products and the host innate immune responses in determining the outcome of virus infection. Robust inflammatory cytokine responses are observed in herpes simplex virus (HSV)-infected animals and cells. Our studies have demonstrated that Toll-like receptor 2 (TLR2) activation by HSV results in NF-κB activation with concomitant inflammatory cytokine production and that TLR2 activation plays a critical role in HSV-induced pathology and mortality. Here we demonstrate that the HSV-1 immediate-early ICP0 protein reduces the TLR2-mediated inflammatory response to HSV 1 (HSV-1) infection. Expression of ICP0 alone is sufficient to block TLR2-driven responses to both viral and nonviral ligands at or downstream of the MyD88 adaptor and upstream of p65. ICP0 alone can also reduce the levels of MyD88 and Mal (TIRAP). In HSV-infected cells, the E3 ligase function of ICP0 and cellular proteasomal activity are required for the inhibitory activity. Our results argue for a model in which ICP0 promotes the degradation of TLR adaptor molecules and inhibition of the inflammatory response, much as it inhibits the interferon response by sequestration and degradation of interferon regulatory factor 3 (IRF-3).
doi:10.1128/JVI.00063-10
PMCID: PMC2950559  PMID: 20686034
24.  Induction and Inhibition of Type I Interferon Responses by Distinct Components of Lymphocytic Choriomeningitis Virus▿  
Journal of Virology  2010;84(18):9452-9462.
Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.
doi:10.1128/JVI.00155-10
PMCID: PMC2937596  PMID: 20592086
25.  Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle 
Diabetes  2009;58(11):2525-2535.
OBJECTIVE
Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10).
RESEARCH DESIGN AND METHODS
MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses.
RESULTS
MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-α, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle.
CONCLUSIONS
These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.
doi:10.2337/db08-1261
PMCID: PMC2768157  PMID: 19690064

Results 1-25 (42)