PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (70)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  An alternative splicing program promotes adipose tissue thermogenesis 
eLife  null;5:e17672.
Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.
DOI: http://dx.doi.org/10.7554/eLife.17672.001
eLife digest
The process of building a protein from the information encoded in a gene begins when the gene is copied to form a pre-messenger RNA molecule. This molecule is then edited to produce a final messenger RNA that is “translated” to form the protein. Different segments of the pre-messenger RNA molecule can be removed to create different messenger RNAs. This “alternative splicing” enables a single gene to produce multiple protein variants, allowing a diverse range of processes to be performed by cells.
Fat cells store energy in the form of fats and can release this energy as heat in a process called thermogenesis. This helps to regulate the body’s metabolism and prevent obesity. Vernia et al. now find that that feeding mice a high-fat diet causes widespread changes in alternative splicing in fat cells. Further bioinformatics analysis revealed that the NOVA family of splicing factors – proteins that bind to the pre-messenger RNAs to control alternative splicing – contribute to the alternative splicing of around a quarter of the genes whose splicing changes in response to a fatty diet.
Mice whose fat cells were deficient in the NOVA splicing factors displayed increased thermogenesis. As a consequence, when these animals were fed a high-fat diet, they gained less weight than animals in which NOVA proteins were present. Their metabolic activity was also better, meaning they were less likely to show the symptoms of pre-diabetes. Moreover, the activity of certain genes that are known to promote thermogenesis was greater in the fat cells that were deficient in NOVA proteins.
Overall, the results presented by Vernia et al. suggest that the normal role of NOVA proteins is to carry out an alternative splicing program that suppresses thermogenesis, which in turn may promote obesity. Drugs that are designed to target NOVA proteins and increase thermogenesis may therefore help to treat metabolic diseases and obesity. The next step is to identify the protein variants that are generated by NOVA proteins and work out how they contribute to thermogenesis.
DOI: http://dx.doi.org/10.7554/eLife.17672.002
doi:10.7554/eLife.17672
PMCID: PMC5026472  PMID: 27635635
pre-mRNA splicing; NOVA; JNK; adipocyte; high fat diet; thermogenesis; Human; Mouse
2.  Glucose tolerance in mice is linked to the dose of the p53 transactivation domain 
Endocrine research  2012;10.3109/07435800.2012.735735.
The tumor suppressor p53 has a critical role in maintenance of glucose homeostasis. Phosphorylation of Ser18 in the transaction domain of p53 controls the expression of Zpf385a, a zinc finger protein that regulates adipogenesis and adipose function. Mice with a mutation in p53Ser18 exhibit reduced Zpf385a expression in adipose tissue, adipose tissue-specific insulin resistance, and glucose intolerance. Mice with relative deficits in the transactivation domain of p53 exhibit similar defects in glucose homeostasis, while “Super p53” mice with an increased dosage of p53 exhibit improved glucose tolerance. These data support the role of an ATM—p53 cellular stress axis that helps combat glucose intolerance and insulin resistance and regulates glucose homeostasis.
doi:10.3109/07435800.2012.735735
PMCID: PMC5074905  PMID: 23102272
p53; glucose intolerance; mouse genetics
3.  Safety of striatal infusion of siRNA in a transgenic Huntington's disease mouse model 
Journal of Huntington's disease  2015;4(3):219-229.
Background
The immune system In Huntington's disease (HD) is activated and may overreact to some therapies. RNA interference using siRNA lowers mutant huntingtin (mHTT) protein but could increase immune responses.
Objective
To examine the innate immune response following siRNA infusion into the striatum of wild-type (WT) and HD transgenic (YAC128) mice.
Methods
siRNAs (2′-O-methyl phosphorothioated) were infused unilaterally into striatum of four month-old WT and YAC128 mice for 28 days. Microglia number and morphology (resting (normal), activated, dystrophic), cytokine levels, and DARPP32-positive neurons were measured in striatum immediately or 14 days post-infusion. Controls included contralateral untreated striatum, and PBS and sham treated striata.
Results
The striata of untreated YAC128 mice had significantly fewer resting microglia and more dystrophic microglia than WT mice, but no difference from WT in the proportion of activated microglia or total number of microglia. siRNA infusion increased the total number of microglia in YAC128 mice compared to PBS treated and untreated striata and increased the proportion of activated microglia in WT and YAC128 mice compared to untreated striata and sham treated groups. Cytokine levels were low and siRNA infusion resulted in only modest changes in those levels. siRNA infusion did not change the number of DARPP32-positive neurons.
Conclusion
Findings suggest that siRNA infusion may be a safe method for lowering mHTT levels in the striatum in young animals, since treatment does not produce a robust cytokine response or cause neurotoxicity. The potential long-term effects of a sustained increase in total and activated microglia after siRNA infusion in HD mice need to be explored.
doi:10.3233/JHD-150163
PMCID: PMC5058343  PMID: 26444021
siRNA; microglia; cytokines; Huntington's disease; immune response
4.  Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress 
eLife  null;5:e10031.
The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.
DOI: http://dx.doi.org/10.7554/eLife.10031.001
eLife digest
Consuming the right amount of food is important for health. Eating too little for a long time causes damage to organs, and overeating can cause harm as well, in the form of conditions such as obesity and type 2 diabetes. Several signaling molecules and brain regions are linked to controlling food consumption and ensuring the body receives the correct amount of nutrients to fuel its activities.
Previous studies have found that two proteins called JNK1 and JNK2, which are found in most tissues of the body, can reduce how much energy cells use. This can trigger insulin resistance and fat accumulation, and so suggests that blocking the activity of these proteins may help to treat type 2 diabetes and obesity. However, the role of another JNK protein – JNK3, which is mostly found in the brain – was not known.
Now, Vernia, Morel et al. have investigated the role of JNK3 in metabolism. It was found that JNK3 reduced the amount of food consumed by mice provided with a cafeteria (high fat) diet. Mice that lacked JNK3 ate far more food and gained more weight on a high fat diet than normal mice. However, JNK3 played no role in food consumption when mice were fed a standard chow diet. Treating normal mice with leptin – an appetite-suppressing hormone – caused them to lose weight, but did not affect mice that lacked JNK3.
Examining the brains of the mice revealed that in normal mice, JNK3 in a specific sub-population of neurons decreases the production of proteins that promote eating. However, the proteins continued to be produced in mice that lacked JNK3, encouraging overeating.
Overall, the results suggest that blocking the activity of all the JNK proteins will not help treat obesity and diabetes as shutting down JNK3 could encourage overeating. Therefore, future investigation into treatments for these conditions should focus on drugs that specifically target JNK1 and JNK2, and not JNK3.
DOI: http://dx.doi.org/10.7554/eLife.10031.002
doi:10.7554/eLife.10031
PMCID: PMC4798947  PMID: 26910012
signal transduction; JNK; leptin; satiety; Mouse
5.  Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance☆ 
Molecular Metabolism  2016;5(12):1149-1161.
Objective
Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis.
Method
White and brown adipocyte-deficient (Hig2fl/fl × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process.
Results
Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes.
Conclusions
We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells.
Highlights
•Hig2 localizes to lipid droplets in adipocytes and promotes adipose tissue lipid deposition.•Its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C.•Metabolic improvements are independent of changes in lipolysis.
doi:10.1016/j.molmet.2016.09.009
PMCID: PMC5123203  PMID: 27900258
Obesity; Adipocyte; Lipid droplet; Lipolysis; Hypoxia-inducible gene 2 (Hig2); LD, lipid droplet; Hig2, Hypoxia-inducible gene 2; TG, triglyceride; FFA, free fatty acid; WAT, white adipose tissue; BAT, brown adipose tissue; Ucp1, uncoupling protein 1; HFD, high fat diet; SVF, stromal vascular fraction; SGBS, Simpson-Golabi-Behmel syndrome; eWAT, epididymal white adipose tissue; iWAT, inguinal white adipose tissue; ITT, insulin tolerance test; RER, respiratory exchange ratio; GTT, glucose tolerance test; NEFA, non-esterified fatty acid
6.  Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance 
Diabetes  2015;64(8):2780-2790.
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance.
doi:10.2337/db14-1772
PMCID: PMC4512217  PMID: 25972571
7.  Human ‘brite / beige’ adipocytes develop from capillary networks and their implantation improves metabolic homeostasis in mice 
Nature medicine  2016;22(3):312-318.
The uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots1–4, in adipocytes termed ‘brite’ (brown-in-white) or ‘beige’. In humans, the presence of ‘brite/beige’ adipocytes correlates with a lean, metabolically healthy phenotype5–8, but whether a causal relationship exists is not clear. Here we report that human ‘brite/beige’ adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform from being UCP1-negative to UCP1-positive in response to adenylate cyclase activation, a defining feature of the ‘beige/brite’ phenotype, and display uncoupled respiration. When implanted into normal or high fat diet-fed, glucose intolerant NOD-scid IL2rgnull mice, activated ‘brite/beige’ adipocytes enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Thus, pro-angiogenic conditions drive proliferation of human ‘beige/brite’ adipocyte progenitors, and activated ‘beige/brite’ adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.
doi:10.1038/nm.4031
PMCID: PMC4777633  PMID: 26808348
human adipocyte; glucose; cytokine; adipokine; thermogenic adipose tissue; implant; capillary; progenitors; adrenergic
8.  PI3-kinase mutation linked to insulin and growth factor resistance in vivo 
The Journal of Clinical Investigation  null;126(4):1401-1412.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome — a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome–associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism.
doi:10.1172/JCI84005
PMCID: PMC4811129  PMID: 26974159
9.  Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia* 
The Journal of Biological Chemistry  2016;291(31):16221-16230.
Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo. After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice.
doi:10.1074/jbc.M116.718932
PMCID: PMC4965570  PMID: 27226575
diabetes; insulin; mitogen-activated protein kinase (MAPK); pancreas; pancreatic islet
10.  Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion 
Nature Communications  2016;7:10686.
Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity.
Expansion of visceral adipose tissue is usually associated with insulin resistance and metabolic disease. Here, the authors show that the membrane protein TNMD is upregulated in visceral fat of insulin resistant obese individuals and promotes healthy adipose tissue expansion through increasing adipogenesis.
doi:10.1038/ncomms10686
PMCID: PMC4757769  PMID: 26880110
11.  PKC-θ knockout mice are protected from fat-induced insulin resistance 
Journal of Clinical Investigation  2004;114(6):823-827.
Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C–θ (PKC-θ), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-θ are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-θ KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40–50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate–1 (IRS-1) and IRS-1–associated PI3K activity. In contrast, PKC-θ inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-θ is a potential therapeutic target for the treatment of type 2 diabetes.
doi:10.1172/JCI200422230
PMCID: PMC516267  PMID: 15372106
12.  Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle 
Journal of Clinical Investigation  2004;113(5):756-763.
Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes.
doi:10.1172/JCI200418917
PMCID: PMC351314  PMID: 14991074
13.  Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues 
Molecular and Cellular Biology  2015;35(13):2356-2365.
Studies in vitro suggest that mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) attenuates insulin signaling, but confirmation in vivo is lacking since Map4k4 knockout is lethal during embryogenesis. We thus generated mice with floxed Map4k4 alleles and a tamoxifen-inducible Cre/ERT2 recombinase under the control of the ubiquitin C promoter to induce whole-body Map4k4 deletion after these animals reached maturity. Tamoxifen administration to these mice induced Map4k4 deletion in all tissues examined, causing decreased fasting blood glucose concentrations and enhanced insulin signaling to AKT in adipose tissue and liver but not in skeletal muscle. Surprisingly, however, mice generated with a conditional Map4k4 deletion in adiponectin-positive adipocytes or in albumin-positive hepatocytes displayed no detectable metabolic phenotypes. Instead, mice with Map4k4 deleted in Myf5-positive tissues, including all skeletal muscles tested, were protected from obesity-induced glucose intolerance and insulin resistance. Remarkably, these mice also showed increased insulin sensitivity in adipose tissue but not skeletal muscle, similar to the metabolic phenotypes observed in inducible whole-body knockout mice. Taken together, these results indicate that (i) Map4k4 controls a pathway in Myf5-positive cells that suppresses whole-body insulin sensitivity and (ii) Map4k4 is a potential therapeutic target for improving glucose tolerance and insulin sensitivity in type 2 diabetes.
doi:10.1128/MCB.00150-15
PMCID: PMC4456439  PMID: 25918248
14.  The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway 
Cell metabolism  2014;20(3):512-525.
The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver.
doi:10.1016/j.cmet.2014.06.010
PMCID: PMC4156535  PMID: 25043817
15.  Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle 
Diabetes  2009;58(11):2525-2535.
OBJECTIVE
Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10).
RESEARCH DESIGN AND METHODS
MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses.
RESULTS
MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-α, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle.
CONCLUSIONS
These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.
doi:10.2337/db08-1261
PMCID: PMC2768157  PMID: 19690064
16.  Nutrient Stress Activates Inflammation and Reduces Glucose Metabolism by Suppressing AMP-Activated Protein Kinase in the Heart 
Diabetes  2009;58(11):2536-2546.
OBJECTIVE
Heart failure is a major cause of mortality in diabetes and may be causally associated with altered metabolism. Recent reports indicate a role of inflammation in peripheral insulin resistance, but the impact of inflammation on cardiac metabolism is unknown. We investigated the effects of diet-induced obesity on cardiac inflammation and glucose metabolism in mice.
RESEARCH DESIGN AND METHODS
Male C57BL/6 mice were fed a high-fat diet (HFD) for 6 weeks, and heart samples were taken to measure insulin sensitivity, glucose metabolism, and inflammation. Heart samples were also examined following acute interleukin (IL)-6 or lipid infusion in C57BL/6 mice and in IL-6 knockout mice following an HFD.
RESULTS
Diet-induced obesity reduced cardiac glucose metabolism, GLUT, and AMP-activated protein kinase (AMPK) levels, and this was associated with increased levels of macrophages, toll-like receptor 4, suppressor of cytokine signaling 3 (SOCS3), and cytokines in heart. Acute physiological elevation of IL-6 suppressed glucose metabolism and caused insulin resistance by increasing SOCS3 and via SOCS3-mediated inhibition of insulin receptor substrate (IRS)-1 and possibly AMPK in heart. Diet-induced inflammation and defects in glucose metabolism were attenuated in IL-6 knockout mice, implicating the role of IL-6 in obesity-associated cardiac inflammation. Acute lipid infusion caused inflammation and raised local levels of macrophages, C-C motif chemokine receptor 2, SOCS3, and cytokines in heart. Lipid-induced cardiac inflammation suppressed AMPK, suggesting the role of lipid as a nutrient stress triggering inflammation.
CONCLUSIONS
Our findings that nutrient stress activates cardiac inflammation and that IL-6 suppresses myocardial glucose metabolism via inhibition of AMPK and IRS-1 underscore the important role of inflammation in the pathogenesis of diabetic heart.
doi:10.2337/db08-1361
PMCID: PMC2768176  PMID: 19690060
17.  RAGE Regulates the Metabolic and Inflammatory Response to High-Fat Feeding in Mice 
Diabetes  2014;63(6):1948-1965.
In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.
doi:10.2337/db13-1636
PMCID: PMC4030112  PMID: 24520121
18.  Inflammation and Insulin Resistance: An Old Story with New Ideas 
Korean Diabetes Journal  2010;34(3):137-145.
Years before insulin was discovered, anti-inflammatory sodium salicylate was used to treat diabetes in 1901. Intriguingly for many years that followed, diabetes was viewed as a disorder of glucose metabolism, and then it was described as a disease of dysregulated lipid metabolism. The diabetes research focused on the causal relationship between obesity and insulin resistance, a major characteristic of type 2 diabetes. It is only within the past 20 years when the notion of inflammation as a cause of insulin resistance began to surface. In obesity, inflammation develops when macrophages infiltrate adipose tissue and stimulate adipocyte secretion of inflammatory cytokines, that in turn affect energy balance, glucose and lipid metabolism, leading to insulin resistance. This report reviews recent discoveries of stress kinase signaling involving molecular scaffolds and endoplasmic reticulum chaperones that regulate energy balance and glucose homeostasis. As we advance from a conceptual understanding to molecular discoveries, a century-old story of inflammation and insulin resistance is re-born with new ideas.
doi:10.4093/kdj.2010.34.3.137
PMCID: PMC2898926  PMID: 20617073
Obesity; Inflammation; Insulin resistance; Stress kinase
19.  A major role of insulin in promoting obesity-associated adipose tissue inflammation 
Molecular Metabolism  2015;4(7):507-518.
Objective
Adipose tissue (AT) inflammation is associated with systemic insulin resistance and hyperinsulinemia in obese rodents and humans. A longstanding concept is that hyperinsulinemia may promote systemic insulin resistance through downregulation of its receptor on target tissues. Here we tested the novel hypothesis that insulin also impairs systemic insulin sensitivity by specifically enhancing adipose inflammation.
Methods
Circulating insulin levels were reduced by about 50% in diet-induced and genetically obese mice by treatments with diazoxide or streptozotocin, respectively. We then examined AT crown-like structures, macrophage markers and pro-inflammatory cytokine expression in AT. AT lipogenesis and systemic insulin sensitivity was also monitored. Conversely, insulin was infused into lean mice to determine its affects on the above parameters.
Results
Lowering circulating insulin levels in obese mice by streptozotocin treatment decreased macrophage content in AT, enhancing insulin stimulated Akt phosphorylation and de novo lipogenesis (DNL). Moreover, responsiveness of blood glucose levels to injected insulin was improved by streptozotocin and diazoxide treatments of obese mice without changes in body weight. Remarkably, even in lean mice, infusion of insulin under constant euglycemic conditions stimulated expression of cytokines in AT. Consistent with these findings, insulin treatment of 3T3-L1 adipocytes caused a 10-fold increase in CCL2 mRNA levels within 6 h, which was blocked by the ERK inhibitor PD98059.
Conclusion
Taken together, these results indicate that obesity-associated hyperinsulinemia unexpectedly drives AT inflammation in obese mice, which in turn contributes to factors that suppress insulin-stimulated adipocyte DNL and systemic insulin sensitivity.
Highlights
•Adipose tissue inflammation correlates with hyperinsulinemia in obese mice and humans independent of BMI.•Reduction of hyperinsulinemia ameliorates adipose tissue inflammation and enhances systemic insulin sensitivity.•Insulin increases adipose inflammation in vivo and enhances adipocyte MCP-1 expression in vitro through ERK activation.
doi:10.1016/j.molmet.2015.04.003
PMCID: PMC4481426  PMID: 26137438
Obesity; Hyperinsulinemia; Adipose tissue; Inflammation; Insulin resistance
20.  MicroRNA-378 controls classical brown fat expansion to counteract obesity 
Nature communications  2014;5:4725.
Both classical brown adipocytes and brown-like beige adipocytes are considered as promising therapeutic targets for obesity; however, their development, relative importance, and functional coordination are not well understood. Here we show that a modest expression of miR-378/378* in adipose tissue specifically increases classical brown fat (BAT) mass, but not white fat (WAT) mass. Remarkably, BAT expansion, rather than miR-378 per se, suppresses formation of beige adipocytes in subcutaneous WAT. Despite this negative feedback, the expanded BAT depot is sufficient to prevent both genetic and high fat diet-induced obesity. At the molecular level, we find that miR-378 targets phosphodiesterase Pde1b in BAT, but not in WAT. Indeed, miR-378 and Pde1b inversely regulate brown adipogenesis in vitro in the absence of phosphodiesterase inhibitor IBMX. Our work identifies miR-378 as a key regulatory component underlying classical BAT-specific expansion and obesity resistance, and adds novel insights into the physiological cross-talk between BAT and WAT.
doi:10.1038/ncomms5725
PMCID: PMC4167820  PMID: 25145289
21.  IL-1 Signaling in Obesity-Induced Hepatic Lipogenesis and Steatosis 
PLoS ONE  2014;9(9):e107265.
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.
doi:10.1371/journal.pone.0107265
PMCID: PMC4162604  PMID: 25216251
22.  Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice 
Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b−/−) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantitfy protein-phosphotyrosine network changes in L-PTP1b−/− mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b−/− mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation-reduction in altered PUFA and triglyceride metabolism.
doi:10.1039/c3ib40013a
PMCID: PMC3759823  PMID: 23685806
PTP1b; Phosphoproteomics; Lipidomics; Liver; Computational Modeling
23.  Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy 
The Journal of Clinical Investigation  2014;124(8):3339-3351.
miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and “whitening” of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte–like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy.
doi:10.1172/JCI73468
PMCID: PMC4109560  PMID: 24983316
24.  JNK Expression by Macrophages Promotes Obesity-induced Insulin Resistance and Inflammation 
Science (New York, N.Y.)  2012;339(6116):10.1126/science.1227568.
The cJun NH2-terminal kinase (JNK) signaling pathway contributes to inflammation and plays a key role in the metabolic response to obesity, including insulin resistance. Macrophages are implicated in this process. To test the role of JNK, we established mice with selective JNK-deficiency in macrophages. We report that feeding a high fat diet to control and JNK-deficient mice caused similar obesity, but only mice with JNK-deficient macrophages remained insulin sensitive. The protection of mice with macrophage-specific JNK-deficiency against insulin resistance was associated with reduced tissue infiltration by macrophages. Immunophenotyping demonstrated that JNK was required for pro-inflammatory macrophage polarization. These studies demonstrate that JNK in macrophages is required for the establishment of obesity-induced insulin resistance and inflammation.
doi:10.1126/science.1227568
PMCID: PMC3835653  PMID: 23223452
25.  Gut-derived serotonin is a multifunctional determinant to fasting adaptation 
Cell metabolism  2012;16(5):588-600.
doi:10.1016/j.cmet.2012.09.014
PMCID: PMC3696514  PMID: 23085101

Results 1-25 (70)