Search tips
Search criteria

Results 1-25 (264)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
2.  Dynamic signaling by T follicular helper cells during germinal center B cell selection 
Science (New York, N.Y.)  2014;345(6200):1058-1062.
T follicular helper (TFH) cells select high-affinity, antibody-producing B cells for clonal expansion in germinal centers (GCs), but the nature of their interaction is not well defined. Using intravital imaging, we found that selection is mediated by large but transient contacts between TFH and GC B cells presenting the highest levels of cognate peptide bound to major histocompatibility complex II. These interactions elicited transient and sustained increases in TFH intracellular free calcium (Ca2+) that were associated with TFH cell coexpression of the cytokines interleukin-4 and -21. However, increased intracellular Ca2+ did not arrest TFH cell migration. Instead, TFH cells remained motile and continually scanned the surface of many GC B cells, forming short-lived contacts that induced selection through further repeated transient elevations in intracellular Ca2+.
PMCID: PMC4519234  PMID: 25170154
3.  Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations 
Nature  2015;517(7534):381-385.
Despite antiretroviral therapy (ART), HIV-1 persists in a stable latent reservoir1, 2, primarily in resting memory CD4+ T cells3, 4. This reservoir presents a major barrier to the cure of HIV-1 infection. To purge the reservoir, pharmacological reactivation of latent HIV-1 has been proposed5 and tested both in vitro and in vivo6–8. A key remaining question is whether virus-specific immune mechanisms including cytolytic T lymphocytes (CTL) can clear infected cells in ART-treated patients after latency is reversed. Here we show that there is a striking all or none pattern for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is started early, the vast majority (>98%) of latent viruses carry CTL escape mutations that render infected cells insensitive to CTLs directed at common epitopes. To solve this problem, we identified CTLs that could recognize epitopes from latent HIV-1 that were unmutated in every chronically infected patient tested. Upon stimulation, these CTLs eliminated target cells infected with autologous virus derived from the latent reservoir, both in vitro and in patient-derived humanized mice. The predominance of CTL-resistant viruses in the latent reservoir poses a major challenge to viral eradication. Our results demonstrate that chronically infected patients retain a broad spectrum viral-specific CTL response and that appropriate boosting of this response may be required for the elimination of the latent reservoir.
PMCID: PMC4406054  PMID: 25561180
4.  Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation 
Nature  2015;523(7559):221-225.
Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The TH17 lineage of T helper (TH) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A)1 and plasticity (they can start expressing cytokines typical of other lineages)1,2 upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion TH17 cells ex vivo during immune responses. Thus, it is unknown whether TH17 cell plasticity merely reflects change in expression of a few cytokines, or if TH17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation3,4. Furthermore, although TH17 cell instability/plasticity has been associated with pathogenicity1,2,5, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic TH17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track TH17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of TH17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and postconversion TH17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, TH17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that TH17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.
PMCID: PMC4498984  PMID: 25924064
5.  Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart 
PLoS ONE  2015;10(6):e0131411.
Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium and studied its effects. Caspase knockout hearts are hypoplastic at birth, reaching normal weight progressively through myocyte hypertrophy. To identify the molecular pathways involved in these effects, we used microarray-based transcriptomics and multiplexed quantitative proteomics to compare wild type and executioner caspase-deficient myocardium at different developmental stages. Transcriptomics showed reduced expression of genes promoting DNA replication and cell cycle progression in the neonatal caspase-deficient heart suggesting reduced myocyte proliferation, and expression of non-cardiac isoforms of structural proteins in the adult null myocardium. Proteomics showed reduced abundance of proteins involved in oxidative phosphorylation accompanied by increased abundance of glycolytic enzymes underscoring retarded metabolic maturation of the caspase-null myocardium. Correlation between mRNA expression and protein abundance of relevant genes was confirmed, but transcriptomics and proteomics indentified complementary molecular pathways influenced by caspases in the developing heart. Forced expression of wild type or proteolytically inactive caspases in cultured cardiomyocytes induced expression of genes promoting cell division. The results reveal that executioner caspases can modulate heart’s cellularity and maturation during development, contributing novel information about caspase biology and heart development.
PMCID: PMC4487935  PMID: 26121671
6.  The lock-washer: a reconciliation of the RIG-I activation models 
Cell Research  2014;24(6):645-646.
RIG-I belongs to a type of intracellular pattern recognition receptors involved in the recognition of viral RNA by the innate immune system. A report by Peisley et al. published in Nature provides the crystal structure of human RIG-I revealing a tetrameric architecture of the RIG-I 2-CARD domain bound by three K63-linked ubiquitin chains, uncovering its activation mechanism for downstream signaling.
PMCID: PMC4042178  PMID: 24797430
7.  FLUshing in the bathroom 
The Journal of Experimental Medicine  2014;211(12):2328-2329.
PMCID: PMC4235632  PMID: 25403806
8.  Murine autoimmune cholangitis requires two hits: Cytotoxic KLRG1+ CD8 effector cells and defective T regulatory cells 
Journal of autoimmunity  2014;50:123-134.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFbRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFbRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFbRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.
PMCID: PMC4098881  PMID: 24556277
KLRG1+ CD8 cells; Primary biliary cirrhosis; T regulatory cells
9.  NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury 
Polymorphisms in NOD2 confer risk for Crohn’s disease (CD), characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well-understood. Anti-CD3 monoclonal antibody (mAb) administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8+ T cells. This requirement was associated with a critical role for NOD2 in SI CD8+ T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and non-hematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8+ T cell depletion or IFN-γ neutralization each inhibited SI CD8+ T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8+ T cell migration during T cell activation, which in turn contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment.
PMCID: PMC4064676  PMID: 24591373
NOD2; IL-10; trafficking; chemokines; Crohn’s disease; piroxicam; colitis
10.  Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation 
The Journal of Clinical Investigation  2014;124(11):4926-4940.
Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.
PMCID: PMC4347244  PMID: 25295542
11.  Toll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals 
Toll is a cell surface receptor with well described roles in the developmental patterning of invertebrates and innate immunity in adult Drosophila. Mammalian toll-like receptors represent a family of Toll orthologs that function in innate immunity by recognizing molecular motifs unique to pathogens or injured tissue. One member in this family of pattern recognition receptors, toll-like receptor 3 (TLR3), recognizes viral double-stranded RNA and host mRNA. We examined the expression and function of TLRs in the nervous system and found that TLR3 is expressed in the mouse central and peripheral nervous systems and is concentrated in the growth cones of neurons. Activation of TLR3 by the synthetic ligand polyinosine:polycytidylic acid (poly I:C) or by mRNA rapidly causes growth cone collapse and irreversibly inhibits neurite extension independent of nuclear factor κB. Mice lacking functional TLR3 were resistant to the neurodegenerative effects of poly I:C. Neonatal mice injected with poly I:C were found to have fewer axons exiting dorsal root ganglia and displayed related sensorimotor deficits. No effect of poly I:C was observed in mice lacking functional TLR3. Together, these findings provide evidence that an innate immune pattern recognition receptor functions autonomously in neurons to regulate axonal growth and advances a novel hypothesis that this class of receptors may contribute to injury and limited CNS regeneration.
PMCID: PMC4313565  PMID: 18032677
Toll-like receptor-3; axon; polyinosine:polycytidylic acid; poly I:C; RNA; CNS; danger theory
12.  Murine Lyme Arthritis Development Mediated by p38 Mitogen-Activated Protein Kinase Activity1 
Borrelia burgdorferi, the Lyme disease agent, causes joint inflammation in an experimental murine model. Inflammation occurs, in part, due to the ability of B. burgdorferi to induce the production of proinflammatory cytokines and a strong CD4+ T helper type 1 response. The mechanisms by which spirochetes induce these responses are not completely known, although transcription factors, such as NF-κB in phagocytic cells, initiate the proinflammatory cytokine burst. We show here that the mitogen-activated protein (MAP) kinase of 38 kDa (p38 MAP kinase) is involved in the proinflammatory cytokine production elicited by B. burgdorferi Ags in phagocytic cells and the development of murine Lyme arthritis. B. burgdorferi Ags activated p38 MAP kinase in vitro, and the use of a specific inhibitor repressed the spirochete-induced production of TNF-α. The infection of mice that are deficient for a specific upstream activator of the kinase, MAP kinase kinase 3, resulted in diminished proinflammatory cytokine production and the development of arthritis, without compromising the ability of CD4+ T cells to respond to borrelial Ags or the production of specific Abs. Overall, these data indicated that the p38 MAP kinase pathway plays an important role in B. burgdorferi-elicited inflammation and point to potential new therapeutic approaches to the treatment of inflammation induced by the spirochete.
PMCID: PMC4309983  PMID: 12055252
13.  Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M 
Nature Communications  2015;6:6062.
Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies.
Glucocorticoids strongly suppress inflammation. Here the authors show that this suppression is mediated by induction of the negative inflammatory regulator IRAK-M, and demonstrate its important role in host defense against the pneumonia-causative bacterium, non-typeable Haemophilus influenzae.
PMCID: PMC4309435  PMID: 25585690
14.  IL-9 Regulates Allergen-Specific Th1 Responses in Allergic Contact Dermatitis 
The cytokine IL-9, derived primarily from T-helper (Th)-9 lymphocytes, promotes expansion of the Th2 subset and is implicated in the mechanisms of allergic asthma. We hypothesize that IL-9 also plays a role in human allergic contact dermatitis (ACD). To investigate this hypothesis, skin biopsy specimens of positive patch test sites from non-atopic patients were assayed using qPCR and immunohistochemistry. Along with Th2 associated cytokines, IFN-γ, IL-4, and IL-17A, expression of IL-9, and PU.1, a Th9-associated transcription factor, were elevated when compared to paired normal skin. Immunohistochemistry on ACD skin biopsies identified PU.1+CD3+, and PU.1+CD4+ cells, consistent with Th9 lymphocytes, in the inflammatory infiltrate. PBMC from nickel-allergic patients, but not non-allergic controls, show significant IL-9 production in response to nickel. Blocking studies with monoclonal antibodies to HLA-DR (but not HLA-A, B, C) or chloroquine significantly reduced this nickel-specific IL-9 production. Additionally, blockade of IL-9 or IL-4 enhanced allergen-specific IFN-γ production. A contact hypersensitivity model using IL-9−/− mice, shows enhanced Th1 lymphocyte immune responses, when compared to WT mice, consistent with our human in vitro data. This study demonstrates that IL-9, through its direct effects on Th1 and ability to promote IL-4 secretion, has a regulatory role for Th1 lymphocytes in ACD.
PMCID: PMC4303591  PMID: 24487305
15.  CD45 ligation expands Tregs by promoting interactions with DCs 
The Journal of Clinical Investigation  2014;124(10):4603-4613.
Regulatory T cells (Tregs), which express CD4 and FOXP3, are critical for modulating the immune response and promoting immune tolerance. Consequently, methods to expand Tregs for therapeutic use are of great interest. While transfer of Tregs after massive ex vivo expansion can be achieved, in vivo expansion of Tregs would be more practical. Here, we demonstrate that targeting the CD45 tyrosine phosphatase with a tolerogenic anti-CD45RB mAb acutely increases Treg numbers in WT mice, even in absence of exogenous antigen. Treg expansion occurred through substantial augmentation of homeostatic proliferation in the preexisting Treg population. Moreover, anti-CD45RB specifically increased Treg proliferation in response to cognate antigen. Compared with conventional T cells, Tregs differentially regulate their conjugation with DCs. Therefore, we determined whether CD45 ligation could alter interactions between Tregs and DCs. Live imaging showed that CD45 ligation specifically reduced Treg motility in an integrin-dependent manner, resulting in enhanced interactions between Tregs and DCs in vivo. Increased conjugate formation, in turn, augmented nuclear translocation of nuclear factor of activated T cells (NFAT) and Treg proliferation. Together, these results demonstrate that Treg peripheral homeostasis can be specifically modulated in vivo to promote Treg expansion and tolerance by increasing conjugation between Tregs and DCs.
PMCID: PMC4191025  PMID: 25202978
16.  Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis 
European Heart Journal  2012;34(48):3717-3727.
The importance of transforming growth factor beta (TGFβ) as an immune regulatory cytokine in atherosclerosis has been established. However, the role of TGFβ signalling in dendritic cells (DCs) and in DC-mediated T cell proliferation and differentiation in atherosclerosis is unknown.
Methods and results
Here, we investigated the effect of disrupted TGFβ signalling in DCs on atherosclerosis by using mice carrying a transgene resulting in functional inactivation of TGFβ receptor II (TGFβRII) signalling in CD11c+ cells (Apoe−/−CD11cDNR). Apoe−/−CD11cDNR mice exhibited an over two-fold increase in the plaque area compared with Apoe−/− mice. Plaques of Apoe−/−CD11cDNR mice showed an increase in CD45+ leucocyte content, and specifically in CD3+, CD4+ and CD8+ cells, whereas macrophage content was not affected. In lymphoid organs, Apoe−/−CD11cDNR mice had equal amounts of CD11c+ cells, and CD11c+CD8+ and CD11c+CD8− subsets, but showed a subtle shift in the CD11c+CD8− population towards the more inflammatory CD11c+CD8−CD4− DC subset. In addition, the number of plasmacytoid-DCs decreased. Maturation markers such as MHCII, CD86 and CD40 on CD11chi cells did not change, but the CD11cDNR DCs produced more TNFα and IL-12. CD11c+ cells from CD11cDNR mice strongly induced T-cell proliferation and activation, resulting in increased amounts of effector T cells producing high amounts of Th1 (IFN-γ), Th2 (IL-4, IL-10), Th17 (IL-17), and Treg (IL-10) cytokines.
Here, we show that loss of TGFβRII signalling in CD11c+ cells induces subtle changes in DC subsets, which provoke uncontrolled T cell activation and maturation. This results in increased atherosclerosis and an inflammatory plaque phenotype during hypercholesterolaemia.
PMCID: PMC3869966  PMID: 22613345
Atherosclerosis; Inflammation; TGFβ; Dendritic cell
17.  Anti-virulence properties of an antifreeze protein 
Cell reports  2014;9(2):417-424.
As microbial drug-resistance increases, there is a critical need for new classes of compounds to combat infectious diseases. The Ixodes scapularis tick antifreeze glycoprotein, IAFGP, functions as an anti-virulence agent against diverse bacteria including methicillin-resistant Staphylococcus aureus. Recombinant IAFGP and a peptide, P1, derived from this protein bind to microbes and alter biofilm formation. Transgenic iafgp-expressing flies and mice challenged with bacteria, as well as wild-type animals administered P1, were resistant to infection, septic shock, or biofilm development on implanted catheter tubing. These data show that an antifreeze protein facilitates host control of bacterial infections and suggest new therapeutic strategies to counter pathogens.
PMCID: PMC4223805  PMID: 25373896
18.  Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells 
Molecular cell  2014;54(1):56-66.
Interchromosomal associations can regulate gene expression but little is known about the molecular basis of such associations. In response to antigen stimulation, naïve T cells can differentiate into Th1, Th2 and Th17 cells expressing IFN-γ, IL-4 and IL-17, respectively. We previously reported that in naïve T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively and CTCF-deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
PMCID: PMC4058095  PMID: 24613343
19.  Oxidative metabolism enables Salmonella evasion of the NLRP3 inflammasome 
Salmonella lacking the TCA enzyme aconitase trigger NLRP3 inflammasome activation in infected macrophages, leading to elevated inflammatory responses and reduced virulence.
Microbial infection triggers assembly of inflammasome complexes that promote caspase-1–dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11–dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.
PMCID: PMC3978275  PMID: 24638169
20.  Dynamin 2–dependent endocytosis is required for sustained S1PR1 signaling 
The endocytosis regulator dynamin 2 is required for the regulation of S1PR1 internalization and continued S1PR1 signaling in low S1P environments.
Sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) is critical for lymphocyte egress from lymphoid organs. Lymphocytes encounter low S1P concentrations near exit sites before transmigration, yet S1PR1 signaling is rapidly terminated after exposure to S1P. How lymphocytes maintain S1PR1 signaling in a low S1P environment near egress sites is unknown. Here we identify dynamin 2, an essential component of endocytosis, as a novel regulator of T cell egress. Mice with T cell–specific dynamin 2 deficiency had profound lymphopenia and impaired egress from lymphoid organs. Dynamin 2 deficiency caused impaired egress through regulation of S1PR1 signaling, and transgenic S1PR1 overexpression rescued egress in dynamin 2 knockout mice. In low S1P concentrations, dynamin 2 was essential for S1PR1 internalization, which enabled continuous S1PR1 signaling and promoted egress from both thymus and lymph nodes. In contrast, dynamin 2–deficient cells were only capable of a pulse of S1PR1 signaling, which was insufficient for egress. Our results suggest a possible mechanism by which T lymphocytes positioned at exit portals sense low S1P concentrations, promoting their egress into circulatory fluids.
PMCID: PMC3978280  PMID: 24638168
21.  Development and function of human innate immune cells in a humanized mouse model 
Nature biotechnology  2014;32(4):364-372.
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.
PMCID: PMC4017589  PMID: 24633240
22.  NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion 
Cell  2014;156(5):1045-1059.
Mucus production by goblet cells of the large intestine serves as a crucial anti microbial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and bio-geographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucin secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies the first innate immune regulatory pathway governing goblet cell mucus secretion, linking non-hematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism.
PMCID: PMC4017640  PMID: 24581500
NLRP6; inflammasome; goblet cell; mucin; autophagy; Citrobacter infection
23.  Analysis of FcR non-binding anti-CD3 mAb in humanized mice identifies novel human gut tropic cells with regulatory function that are found in patients 
Science translational medicine  2012;4(118):118ra12.
The development and optimization of immune therapies in patients has been hampered by the lack of preclinical models in which their effects on human immune cells can be studied. As a result, observations that have been made in preclinical studies have suggested mechanisms of drug action in murine models that may not be confirmed in clinical studies. We have utilized a humanized mouse reconstituted with human hematopoetic stem cells to circumvent these limitations. We have studied the effects of teplizumab in this model, a Fc receptor non-binding humanized monoclonal anti-CD3 antibody that has been used to treat patients with Type 1 diabetes mellitus. A novel mechanism of action was identified where human gut tropic CCR6+ T cells leave the circulation and secondary lymph organs and migrate to the small intestine. They become producers of IL-10 which can be detected in the peripheral circulation. Blockade of migration of T cells to the small intestine by natalizumab abolishes the treatment effects of teplizumab. Direct translation of these findings was possible in patients with Type 1 diabetes treated with teplizumab since we found there is increased expression of IL-10 by CD4+CD25highCCR6+FoxP3 cells when they emerge into the peripheral circulation. These findings demonstrate that humanized mice may be used to identify novel immunologic mechanisms that occur in patients treated with immune modulators.
PMCID: PMC4131554  PMID: 22277969
24.  Human Hemato-Lymphoid System Mice: Current Use and Future Potential for Medicine 
Annual review of immunology  2013;31:635-674.
To directly study complex human hemato-lymphoid system physiology and respective system-associated diseases in vivo, human-to-mouse xenotransplantation models for human blood and blood-forming cells and organs have been developed over the past three decades. We here review the fundamental requirements and the remarkable progress made over the past few years in improving these systems, the current major achievements reached by use of these models, and the future challenges to more closely model and study human health and disease and to achieve predictive preclinical testing of both prevention measures and potential new therapies.
PMCID: PMC4120191  PMID: 23330956
humanized mice; stem cells; hematopoiesis; infectious disease; cancer
25.  Topological Organization of Multi-chromosomal Regions by Firre 
RNA is known to be an abundant and important structural component of the nuclear matrix, including long noncoding RNAs (lncRNA). Yet the molecular identities, functional roles, and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear matrix factor hnRNPU, through a 156 bp repeating sequence and Firre localizes across a ~5 Mb domain on the X-chromosome. We further observed Firre localization across at least five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X-chromosome. Both genetic deletion of the Firre locus or knockdown of hnRNPU resulted in loss of co-localization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes.
PMCID: PMC3950333  PMID: 24463464

Results 1-25 (264)