PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Flaviviruses Are Sensitive to Inhibition of Thymidine Synthesis Pathways 
Journal of Virology  2013;87(17):9411-9419.
Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.
doi:10.1128/JVI.00101-13
PMCID: PMC3754125  PMID: 23824813
2.  Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence ▿  
Journal of Virology  2011;85(19):10154-10166.
The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5′ cyclization sequence (5′CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an “in vivo-ready” version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses.
doi:10.1128/JVI.05298-11
PMCID: PMC3196423  PMID: 21795337
3.  CD11b+, Ly6G+ Cells Produce Type I Interferon and Exhibit Tissue Protective Properties Following Peripheral Virus Infection 
PLoS Pathogens  2011;7(11):e1002374.
The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b+Ly6C+Ly6G- monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b+Ly6C+Ly6G+ cells. The phenotype of the CD11b+Ly6C+Ly6G+ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b+Ly6C+Ly6G+ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b+Ly6C+Ly6G+ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G+ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b+Ly6C+Ly6G+ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction.
Author Summary
During a natural virus infection, small doses of infectious virus are deposited at a peripheral infection site, and then a “race” ensues, in which the replicating virus attempts to “outpace” the responding immune system of the host. In the early phases of infection, the innate immune system must contain the infection prior to the development of an effective adaptive response. Here we have characterized the cells of the innate immune system that move to a site of peripheral virus infection, and we find that a subset of these cells display atypical expression of cell surface molecules, timing of infiltration, and function. These cells protect the infected tissue from damage by producing reactive oxygen molecules, which are widely accepted to increase tissue damage. Therefore our findings indicate that during a peripheral virus infection, the typical rules governing the function of the innate immune system are altered to prevent tissue damage.
doi:10.1371/journal.ppat.1002374
PMCID: PMC3213107  PMID: 22102816
4.  Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle 
Diabetes  2009;58(11):2525-2535.
OBJECTIVE
Insulin resistance is a major characteristic of type 2 diabetes and is causally associated with obesity. Inflammation plays an important role in obesity-associated insulin resistance, but the underlying mechanism remains unclear. Interleukin (IL)-10 is an anti-inflammatory cytokine with lower circulating levels in obese subjects, and acute treatment with IL-10 prevents lipid-induced insulin resistance. We examined the role of IL-10 in glucose homeostasis using transgenic mice with muscle-specific overexpression of IL-10 (MCK-IL10).
RESEARCH DESIGN AND METHODS
MCK-IL10 and wild-type mice were fed a high-fat diet (HFD) for 3 weeks, and insulin sensitivity was determined using hyperinsulinemic-euglycemic clamps in conscious mice. Biochemical and molecular analyses were performed in muscle to assess glucose metabolism, insulin signaling, and inflammatory responses.
RESULTS
MCK-IL10 mice developed with no obvious anomaly and showed increased whole-body insulin sensitivity. After 3 weeks of HFD, MCK-IL10 mice developed comparable obesity to wild-type littermates but remained insulin sensitive in skeletal muscle. This was mostly due to significant increases in glucose metabolism, insulin receptor substrate-1, and Akt activity in muscle. HFD increased macrophage-specific CD68 and F4/80 levels in wild-type muscle that was associated with marked increases in tumor necrosis factor-α, IL-6, and C-C motif chemokine receptor-2 levels. In contrast, MCK-IL10 mice were protected from diet-induced inflammatory response in muscle.
CONCLUSIONS
These results demonstrate that IL-10 increases insulin sensitivity and protects skeletal muscle from obesity-associated macrophage infiltration, increases in inflammatory cytokines, and their deleterious effects on insulin signaling and glucose metabolism. Our findings provide novel insights into the role of anti-inflammatory cytokine in the treatment of type 2 diabetes.
doi:10.2337/db08-1261
PMCID: PMC2768157  PMID: 19690064
5.  Dendritic Cell Migration Limits the Duration of CD8+ T-Cell Priming to Peripheral Viral Antigen▿  
Journal of Virology  2010;84(7):3586-3594.
CD8+ T cells (TCD8+) play a crucial role in immunity to viruses. Antiviral TCD8+ are initially activated by recognition of major histocompatibility complex (MHC) class I-peptide complexes on the surface of professional antigen-presenting cells (pAPC). Migration of pAPC from the site of infection to secondary lymphoid organs is likely required during a natural infection. Migrating pAPC can be directly infected with virus or may internalize antigen derived from virus-infected cells. The use of experimental virus infections to assess the requirement for pAPC migration in initiation of TCD8+ responses has proven difficult to interpret because injected virus can readily drain to secondary lymphoid organs without the need for cell-mediated transport. To overcome this ambiguity, we examined the generation of antigen-specific TCD8+ after immunization with recombinant adenoviruses that express antigen driven by skin-specific or ubiquitous promoters. We show that the induction of TCD8+ in response to tissue-targeted antigen is less efficient than the response to ubiquitously expressed antigen and that the resulting TCD8+ fail to clear all target cells pulsed with the antigenic peptide. This failure to prime a fully functional TCD8+ response results from a reduced period of priming to peripherally expressed antigen versus ubiquitously expressed antigen and correlated with a brief burst of pAPC migration from the skin, a requirement for induction of the response to peripheral antigen. These results indicate that a reduced duration of pAPC migration after virus infection likely reduces the amplitude of the TCD8+ response, allowing persistence of the peripheral virus.
doi:10.1128/JVI.01975-09
PMCID: PMC2838146  PMID: 20089641
6.  CD8+ T Cells Targeting A Single Immunodominant Epitope Are Sufficient for Elimination of Established SV40 T Antigen-Induced Brain Tumors1 
Immunotherapy of established solid tumors is rarely achieved and the mechanisms leading to success remain to be elucidated. We previously showed that extended control of advanced-stage autochthonous brain tumors is achieved following adoptive transfer of naïve C57BL/6 splenocytes into sublethally irradiated line SV11 mice expressing the SV40 T antigen (T Ag) oncoprotein, and was associated with in vivo priming of CD8+ T cells (TCD8) specific for the dominant epitope IV (T Ag residues 404–411). Using donor lymphocytes derived from mice that are tolerant to epitope IV or a newly characterized transgenic mouse line expressing an epitope IV-specific T cell receptor, we show that epitope IV-specific TCD8 are a necessary component of the donor pool and that purified naïve epitope IV-specific TCD8 are sufficient to promote complete and rapid regression of established tumors. While transfer of naïve TCR-IV cells alone induced some initial tumor regression, increased survival of tumor-bearing mice required prior conditioning of the host with a sublethal dose of gamma irradiation and was associated with complete tumor eradication. Regression of established tumors was associated with rapid accumulation of TCR-IV T cells within the brain following initial priming against the endogenous T Ag in the peripheral lymphoid organs. In addition, persistence of functional TCR-IV cells in both the brain and peripheral lymphoid organs was associated with long-term tumor-free survival. Finally, we show that production of IFNγ, but not perforin or TNFα, by the donor lymphocytes is critical for control of autochthonous brain tumors.
PMCID: PMC2631553  PMID: 18768900
SV40 T antigen; T cell receptor; transgenic mice; immunotherapy; IFN-γ

Results 1-6 (6)