PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Chitotriosidase in the Pathogenesis of Inflammation, Interstitial Lung Diseases and COPD 
As a member of 18 glycosyl hydrolase (GH) family, chitotriosidase (Chitinase 1, CHIT1) is a true chitinase mainly expressed in the differentiated and polarized macrophages. CHIT1 is an innate immune mediator that digests the cell walls of chitin-containing eukaryotic pathogens, such as fungi. However, CHIT1 is dysregulated in granulomatous and fibrotic interstitial lung diseases characterized by inflammation and tissue remodeling. These include tuberclosis, sarcoidosis, idiopathic pulmonary fibrosis, scleroderma-associated interstitial lung diseases (SSc-ILD), and chronic obstructive lung diseases (COPD). CHIT1 serum concentration correlates with the progression or the severity of these diseases, suggesting a potential use of CHIT1 as a biomarker or a therapeutic target. Recent studies with genetically modified mice demonstrate that CHIT1 enhances TGF-β1 receptor expression and signaling, suggesting a role in initiating or amplifying the response to organ injury and repair. This additional CHIT1 activity is independent of its enzymatic activity. These studies suggest that CHIT1 serves a bridging function; it is both an innate immune mediator and a regulator of tissue remodeling. This review will focus on recent data linking CHIT1 to the pathogenesis of inflammation, interstitial lung disease, and COPD.
doi:10.4168/aair.2015.7.1.14
PMCID: PMC4274464  PMID: 25553258
Chitotriosidase; sarcoidosis; scleroderma; idiopathic pulmonary fibrosis; inflammation; TGF-beta
2.  Lysophosphatidic Acid and Apolipoprotein A1 Predict Increased Risk of Developing World Trade Center Lung Injury: A Nested Case-Control Study 
Rationale
Metabolic syndrome, inflammatory and vascular injury markers measured in serum after WTC exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV1
Methods
Nested case-control study of WTC-exposed firefighters. Cases had FEV1
Results
LPA and ApoA1 levels were higher in cases than controls and predictive of case status. LPA increased the odds by 13% while ApoA1 increased the odds by 29% of an FEV1
Conclusions
Elevated LPA and ApoA1 are predictive of a significantly increased risk of developing an FEV1
doi:10.3109/1354750X.2014.891047
PMCID: PMC4306444  PMID: 24548082
Biomarkers; World Trade Center; Dyslipidemia and Occupational Exposure
Respiratory medicine  2013;108(1):162-170.
Background
Firefighters exposed to World Trade Center (WTC) dust have developed chronic rhinosinusitis (CRS) and abnormal forced expiratory volume in 1 second (FEV1). Overlapping but distinct immune responses may be responsible for the clinical manifestations of upper and lower airway injury. We investigated whether a panel of inflammatory cytokines, either associated or not associated with WTC-LI, can predict future chronic rhinosinusitis disease and its severity.
Methods
Serum obtained within six months of 9/11/2001 from 179 WTC exposed firefighters presenting for subspecialty evaluation prior to 3/2008 was assayed for 39 cytokines. The main outcomes were medically managed CRS (N=62) and more severe CRS cases requiring sinus surgery (N=14). We tested biomarker-CRS severity association using ordinal logistic regression analysis.
Results
Increasing serum IL-6, IL-8, GRO and neutrophil concentration reduced the risk of CRS progression. Conversely, increasing TNF-α increased the risk of progression. In a multivariable model adjusted for exposure intensity, increasing IL-6, TNF-α and neutrophil concentration remained significant predictors of progression. Elevated IL-6 levels and neutrophil counts also reduced the risk of abnormal FEV1 but in contrast to CRS, increased TNF-α did not increase the risk of abnormal FEV1.
Conclusions
Our study demonstrates both independent and overlapping biomarker associations with upper and lower respiratory injury, and suggests that the innate immune response may play a protective role against CRS and abnormal lung function in those with WTC exposure.
doi:10.1016/j.rmed.2013.11.002
PMCID: PMC3946892  PMID: 24290899
one airway; chronic rhinosinusitis; World Trade Center; innate immunity
Journal of clinical immunology  2013;33(6):1134-1142.
Purpose
World Trade Center (WTC) exposure caused airflow obstruction years after exposure. Chitinases and IgE are innate and humoral mediators of obstructive airway disease. We investigated if serum expression of chitinases and IgE early after WTC exposure predicts subsequent obstruction.
Methods
With a nested case-control design, 251 FDNY personnel had chitotriosidase, YKL-40 and IgE measured in serum drawn within months of 9/11/2001. The main outcome was subsequent Forced Expiratory Volume after one second/Forced Vital Capacity (FEV1/FVC) less than the lower limit of normal (LLN). Cases (N=125) had abnormal FEV1/FVC whereas controls had normal FEV1/FVC (N=126). In a secondary analysis, resistant cases (N=66) had FEV1 (≥107%) one standard deviation above the mean. Logistic regression adjusted for age, BMI, exposure intensity and post-exposure FEV1/FVC modeled the association between early biomarkers and later lung function.
Results
Cases and Controls initially lost lung function. Controls recovered to pre-9/11 FEV1 and FVC while cases continue to decline. Cases expressed lower serum chitotriosidase and higher IgE levels. Increase in IgE increased the odds of airflow obstruction and decreased the odds of above average FEV1. Alternately, increasing chitotriosidase decreased the odds of abnormal FEV1/FVC and increased the odds of FEV1≥107%. Serum YKL-40 was not associated with FEV1/FVC or FEV1 in this cohort.
Conclusions
Increased serum chitotriosidase reduces the odds of developing obstruction after WTC-particulate matter exposure and is associated with recovery of lung function. Alternately, elevated IgE is a risk factor for airflow obstruction and progressive lung function decline.
doi:10.1007/s10875-013-9913-2
PMCID: PMC3722498  PMID: 23744081
Chitotriosidase; Immunoglobulin E; WTC Particulate Matter; Pulmonary Function Testing
Pulmonary vascular loss is an early feature of chronic obstructive pulmonary disease. Biomarkers of inflammation and of metabolic syndrome, predicts loss of lung function in World Trade Center Lung Injury (WTC-LI). We investigated if other cardiovascular disease (CVD) biomarkers also predicted WTC-LI.
This nested case-cohort study used 801 never smoker, WTC exposed firefighters with normal pre-9/11 lung function presenting for subspecialty pulmonary evaluation (SPE) before March, 2008. A representative sub-cohort of 124/801 with serum drawn within six months of 9/11 defined CVD biomarker distribution. Post-9/11/01 FEV1 at subspecialty exam defined cases: susceptible WTC-LI cases with FEV1≤77% predicted (66/801) and resistant WTC-LI cases with FEV1≥107% (68/801). All models were adjusted for WTC exposure intensity, BMI at SPE, age at 9/11, and pre-9/11 FEV1.
Susceptible WTC-LI cases had higher levels of Apo-AII, CRP, and MIP-4 with significant RRs of 3.85, 3.93, and 0.26 respectively with an area under the curve (AUC) of 0.858. Resistant WTC-LI cases had significantly higher sVCAM and lower MPO with RRs of 2.24, and 2.89 respectively; AUC 0.830.
Biomarkers of CVD in serum six-month post-9/11 predicted either susceptibility or resistance to WTC-LI. These biomarkers may define pathways producing or protecting subjects from pulmonary vascular disease and associated loss of lung function after an irritant exposure.
doi:10.1183/09031936.00077012
PMCID: PMC3642231  PMID: 22903969
Airway Inflammation; Cytokines; Pulmonary Funtion Testing
Respiratory Research  2014;15(1):5.
Rationale
After 9/11/2001, most FDNY workers had persistent lung function decline but some exposed workers recovered. We hypothesized that the protease/anti-protease balance in serum soon after exposure predicts subsequent recovery.
Methods
We performed a nested case–control study measuring biomarkers in serum drawn before 3/2002 and subsequent forced expiratory volume at one second (FEV1) on repeat spirometry before 3/2008. Serum was assayed for matrix metalloproteinases (MMP-1,2,3,7,8,9,12 and 13) and tissue inhibitors of metalloproteinases (TIMP-1,2,3,4). The representative sub-cohort defined analyte distribution and a concentration above 75th percentile defined elevated biomarker expression. An FEV1 one standard deviation above the mean defined resistance to airway injury. Logistic regression was adjusted for pre-9/11 FEV1, BMI, age and exposure intensity modeled the association between elevated biomarker expression and above average FEV1.
Results
FEV1 in cases and controls declined 10% of after 9/11/2001. Cases subsequently returned to 99% of their pre-exposure FEV1 while decline persisted in controls. Elevated TIMP-1 and MMP-2 increased the odds of resistance by 5.4 and 4.2 fold while elevated MMP-1 decreased it by 0.27 fold.
Conclusions
Resistant cases displayed healing, returning to 99% of pre-exposure values. High TIMP-1 and MMP-2 predict healing. MMP/TIMP balance reflects independent pathways to airway injury and repair after WTC exposure.
doi:10.1186/1465-9921-15-5
PMCID: PMC3913317  PMID: 24447332
Biomarkers; Lung disease; Occupational exposure
PLoS ONE  2012;7(7):e40016.
Background
The WTC collapse exposed over 300,000 people to high concentrations of WTC-PM; particulates up to ∼50 mm were recovered from rescue workers’ lungs. Elevated MDC and GM-CSF independently predicted subsequent lung injury in WTC-PM-exposed workers. Our hypotheses are that components of WTC dust strongly induce GM-CSF and MDC in AM; and that these two risk factors are in separate inflammatory pathways.
Methodology/Principal Findings
Normal adherent AM from 15 subjects without WTC-exposure were incubated in media alone, LPS 40 ng/mL, or suspensions of WTC-PM10–53 or WTC-PM2.5 at concentrations of 10, 50 or 100 µg/mL for 24 hours; supernatants assayed for 39 chemokines/cytokines. In addition, sera from WTC-exposed subjects who developed lung injury were assayed for the same cytokines. In the in vitro studies, cytokines formed two clusters with GM-CSF and MDC as a result of PM10–53 and PM2.5. GM-CSF clustered with IL-6 and IL-12(p70) at baseline, after exposure to WTC-PM10–53 and in sera of WTC dust-exposed subjects (n = 70) with WTC lung injury. Similarly, MDC clustered with GRO and MCP-1. WTC-PM10–53 consistently induced more cytokine release than WTC-PM2.5 at 100 µg/mL. Individual baseline expression correlated with WTC-PM-induced GM-CSF and MDC.
Conclusions
WTC-PM10–53 induced a stronger inflammatory response by human AM than WTC-PM2.5. This large particle exposure may have contributed to the high incidence of lung injury in those exposed to particles at the WTC site. GM-CSF and MDC consistently cluster separately, suggesting a role for differential cytokine release in WTC-PM injury. Subject-specific response to WTC-PM may underlie individual susceptibility to lung injury after irritant dust exposure.
doi:10.1371/journal.pone.0040016
PMCID: PMC3399845  PMID: 22815721
Transforming growth factor (TGF)-β1 is an essential regulatory cytokine that has been implicated in the pathogenesis of diverse facets of the injury and repair responses in the lung. The types of responses that it elicits can be appreciated in studies from our laboratory that demonstrated that the transgenic (Tg) overexpression of TGF-β1 in the murine lung causes epithelial apoptosis followed by fibrosis, inflammation, and parenchymal destruction. Because a cyclin-dependent kinase inhibitor, p21, is a key regulator of apoptosis, we hypothesized that p21 plays an important role in the pathogenesis of TGF-β1–induced tissue responses. To test this hypothesis we evaluated the effect of TGF-β1 on the expression of p21 in the murine lung. We also characterized the effects of transgenic TGF-β1 in mice with wild-type and null mutant p21 loci. These studies demonstrate that TGF-β1 is a potent stimulator of p21 expression in the epithelial cells and macrophages in the murine lung. They also demonstrate that TGF-β1–induced lung inflammation, fibrosis, myofibroblast accumulation, and alveolar destruction are augmented in the absence of p21, and that these alterations are associated with exaggerated levels of apoptosis and caspase-3 activation. Finally, our studies further demonstrated that TGF-β1 induces p21 via a TNF-α–signaling pathway and that p21 is a negative modulator of TGF-β1–induced TNF-α expression. Collectively, our studies demonstrate that p21 regulates TGF-β1–induced apoptosis, inflammation, fibrosis, and alveolar remodeling by interacting with TNF-α–signaling pathways.
doi:10.1165/rcmb.2007-0276OC
PMCID: PMC2258454  PMID: 17932374
TGF-β; p21; apoptosis; fibrosis; emphysema
Fibrosis and apoptosis are juxtaposed in pulmonary disorders such as asthma and the interstitial diseases, and transforming growth factor (TGF)-β1 has been implicated in the pathogenesis of these responses. However, the in vivo effector functions of TGF-β1 in the lung and its roles in the pathogenesis of these responses are not completely understood. In addition, the relationships between apoptosis and other TGF-β1–induced responses have not been defined. To address these issues, we targeted bioactive TGF-β1 to the murine lung using a novel externally regulatable, triple transgenic system. TGF-β1 produced a transient wave of epithelial apoptosis that was followed by mononuclear-rich inflammation, tissue fibrosis, myofibroblast and myocyte hyperplasia, and septal rupture with honeycombing. Studies of these mice highlighted the reversibility of this fibrotic response. They also demonstrated that a null mutation of early growth response gene (Egr)-1 or caspase inhibition blocked TGF-β1–induced apoptosis. Interestingly, both interventions markedly ameliorated TGF-β1–induced fibrosis and alveolar remodeling. These studies illustrate the complex effects of TGF-β1 in vivo and define the critical role of Egr-1 in the TGF-β1 phenotype. They also demonstrate that Egr-1–mediated apoptosis is a prerequisite for TGF-β1–induced fibrosis and remodeling.
doi:10.1084/jem.20040104
PMCID: PMC2211975  PMID: 15289506
asthma; pulmonary fibrosis; fibrosis reversibility; airway remodeling

Results 1-9 (9)