Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Enhanced Anti-Serpin Antibody Activity Inhibits Autoimmune Inflammation in Type 1 Diabetes 
Intracellular (clade B) ovalbumin (ov)-serpin protease inhibitors play an important role in tissue homeostasis by protecting cells from death in response to hypoosmotic stress, heat shock and other stimuli. Whether these serpins influence immunological tolerance and the risk for autoimmune diseases is not known. We found that a fraction of young autoimmune diabetes-prone non-obese diabetic (NOD) mice had elevated levels of autoantibodies against a member of clade B family known as serpinB13. High levels of anti-serpinB13 antibodies were accompanied by low levels of anti-insulin autoantibodies, reduced numbers of islet-associated T-cells and delayed onset of diabetes. Exposure to anti-serpinB13 monoclonal antibody (mAb) alone also decreased islet inflammation and co-administration of this reagent and a suboptimal dose of anti-CD3 mAb accelerated recovery from diabetes. In a fashion similar to that discovered in the NOD model, a deficiency in humoral activity against serpinB13 was associated with early onset of human type 1 diabetes. These findings suggest that in addition to limiting exposure to proteases within the cell, clade B serpins help to maintain homeostasis by inducing protective humoral immunity.
PMCID: PMC3370061  PMID: 22593614
2.  Targeting Toll-like receptors on dendritic cells modifies the TH2 response to peanut allergens in vitro 
Delivery of allergens with bacterial adjuvants has been shown to be a successful immunotherapeutic strategy for food allergy treatment in animal models. How microbial signals, acting through the innate immune system, reshape ongoing allergic responses is poorly understood.
To investigate the contribution of Toll-like receptors in the response to bacterial adjuvants, we designed an in vitro system to characterize the effect of heat-killed E.coli on peanut-induced responses of dendritic cells (DCs) and T cells.
Wild-type or Toll-Like Receptor (TLR) signaling-deficient bone-marrow derived DCs were pulsed with crude peanut extract alone (CPE) (50 µg/mL) in the presence of heat-killed E.coli (HKE) (106/mL). DC maturation was analyzed by flow cytometry. Treated DCs were co-cultured with CFSE-labeled CD4+ T cells from sensitized mice. Cytokine production from DCs and T cells was measured by bioplex assays.
Peanut pulsed DCs induced the production of IL-4, IL-5, IL-13 as well as IL-17 and IFN-γ from primed T cells. Adding HKE to CPE-pulsed DCs resulted in a significant decrease in Th2 cytokine production, associated with an increase in IFN-γ and profound attenuation of T cell proliferation. These effects were linked to HKE-induced, TLR-dependent changes in DC reactivity to CPE, especially the production of polarizing cytokines such as IL-12.
TLR signals modulate peanut-induced DC maturation in vitro leading to changes in the T cell response to peanut. These TLR effects must be confirmed in vivo and may constitute another alternative for allergen immunotherapies.
PMCID: PMC2902661  PMID: 20538332
Peanut allergy; EMP-123; Dendritic cell; Toll-like receptor; MyD88; IL-12
3.  Lung vascular endothelial growth factor expression induces local myeloid dendritic cell activation 
Clinical immunology (Orlando, Fla.)  2009;132(3):371-384.
We previously demonstrated that vascular endothelial growth factor (VEGF) expression in the murine lung increases local CD11c+ MHCII+ DC number and activation. In this study, employing a multicolor flow cytometry, we report increases in both myeloid (mDC) and plasmacytoid (pDC) DC in the lungs of VEGF transgenic (tg) compared to WT mice. Lung pDC from VEGF tg mice exhibited higher levels of activation with increased expression of MHCII and costimulatory molecules. As VEGF tg mice display an asthma-like phenotype and lung mDC play a critical role in asthmatic setting, studies were undertaken to further characterize murine lung mDC. Evaluations of sorted mDC from VEGF tg lungs demonstrated a selective upregulation of cathepsin K, MMP-8, -9, -12, and -14, and chemokine receptors as compared to those obtained from WT control mice. They also had increased VEGFR2 but downregulated VEGFR1 expression. Analysis of chemokine and regulatory cytokine expression in these cells showed an upregulation of macrophage chemotactic protein-3 (MCP-3), thymus-expressed chemokine (TECK), secondary lymphoid organ chemokine (SLC), macrophage-derived chemokine (MDC), IL-1β, IL-6, IL-12 and IL-13. The antigen (Ag) OVA-FITC uptake by lung DC and the migration of Ag-loaded DC to local lymph nodes were significantly increased in VEGF tg mice compared to WT mice. Thus, VEGF may predispose the lung to inflammation and/or repair by activating local DC. It regulates lung mDC expression of innate immunity effector molecules. The data presented here demonstrate how lung VEGF expression functionally affects local mDC for the transition from the innate response to a Th2-type inflammatory response.
PMCID: PMC2780370  PMID: 19553159
Rodent; lung; inflammation; dendritic cells; cell activation
4.  Innate Immune Control of Pulmonary Dendritic Cell Trafficking 
Dendritic cells (DC) are potent antigen-presenting cells that are essential for initiating adaptive immune responses. Residing within the airway mucosa, pulmonary DC continually sample the antigenic content of inhaled air and migrate to draining lymph nodes, where they present these antigens to naive T cells. The migratory patterns of pulmonary DC are highly dependent upon inflammatory conditions in the lung. Under steady-state, or non-inflammatory, conditions, pulmonary DC undergo slow but constitutive migration to draining lymph nodes, where they remain for several days and confer antigen-specific tolerance. With the onset of pulmonary inflammation, airway DC trafficking increases dramatically, and these cells rapidly accumulate within draining lymph nodes. However, within a few days, the number of airway-derived DC in lymph nodes stabilizes or declines, even in the face of ongoing pulmonary inflammation. Here, we summarize current understanding of the molecular and cellular mechanisms underlying pulmonary DC trafficking to the lymph node and the recruitment of DC precurors to the lung. It is hoped that an improved understanding of these mechanisms will lead to novel DC-mediated therapeutic strategies to treat immune-related pulmonary disease.
PMCID: PMC2647624  PMID: 17607005
lung; dendritic cells; lymph nodes
5.  MyD88-dependent induction of allergic Th2 responses to intranasal antigen 
Journal of Clinical Investigation  2005;115(2):459-467.
MyD88 is a common Toll-like receptor (TLR) adaptor molecule found to be essential for induction of adaptive Th1 immunity. Conversely, innate control of adaptive Th2 immunity has been shown to occur in a MyD88-independent manner. In this study, we show that MyD88 is an essential innate component in the induction of TLR4-dependent Th2 responses to intranasal antigen; thus we demonstrate what we believe to be a novel role for MyD88 in pulmonary Th2 immunity. Induction of the MyD88-independent type I IFN response to LPS is defective in the pulmonary environment. Moreover, in the absence of MyD88, LPS-induced upregulation of costimulatory molecule expression on pulmonary DCs is defective, in contrast to what has been observed with bone marrow–derived DCs (BMDCs). Reconstitution of Th2 responses occurs upon adoptive pulmonary transfer of activated BMDCs to MyD88-deficient recipients. Furthermore, the dependence of Th2 responses on MyD88 is governed by the initial route of antigen exposure; this demonstrates what we believe are novel site-specific innate mechanisms for control of adaptive Th2 immunity.
PMCID: PMC544038  PMID: 15650773
6.  Cytolytic CD4+-T-Cell Clones Reactive to EBNA1 Inhibit Epstein-Barr Virus-Induced B-Cell Proliferation†  
Journal of Virology  2003;77(22):12088-12104.
In the absence of immune surveillance, Epstein-Barr virus (EBV)-infected B cells generate neoplasms in vivo and transformed cell lines in vitro. In an in vitro system which modeled the first steps of in vivo immune control over posttransplant lymphoproliferative disease and lymphomas, our investigators previously demonstrated that memory CD4+ T cells reactive to EBV were necessary and sufficient to prevent proliferation of B cells newly infected by EBV (S. Nikiforow et al., J. Virol. 75:3740-3752, 2001). Here, we show that three CD4+-T-cell clones reactive to the latent EBV antigen EBNA1 also prevent the proliferation of newly infected B cells from major histocompatibility complex (MHC) class II-matched donors, a crucial first step in the transformation process. EBNA1-reactive T-cell clones recognized B cells as early as 4 days after EBV infection through an HLA-DR-restricted interaction. They secreted Th1-type and Th2-type cytokines and lysed EBV-transformed established lymphoblastoid cell lines via a Fas/Fas ligand-dependent mechanism. Once specifically activated, they also caused bystander regression and bystander killing of non-MHC-matched EBV-infected B cells. Since EBNA1 is recognized by CD4+ T cells from nearly all EBV-seropositive individuals and evades detection by CD8+ T cells, EBNA1-reactive CD4+ T cells may control de novo expansion of B cells following EBV infection in vivo. Thus, EBNA1-reactive CD4+-T-cell clones may find use as adoptive immunotherapy against EBV-related lymphoproliferative disease and many other EBV-associated tumors.
PMCID: PMC254269  PMID: 14581546
7.  Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen 
The Journal of Experimental Medicine  2002;196(12):1645-1651.
Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence.
PMCID: PMC2196061  PMID: 12486107
asthma; Toll-like receptor; T cell; dendritic cell; lung
8.  Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ 
The Journal of Clinical Investigation  2002;110(10):1441-1448.
Antigen exposure via airway epithelia is often associated with a failure to prime or with the preferential priming of Th2 cells. We previously reported that the intranasal delivery of a Th1-inducing antigen promoted Th2-dominated responses, rather than the expected Th1 responses. Thus, we proposed that when pulmonary T cell priming is induced, the lung microenvironment might intrinsically favor the generation of Th2 types of responses. To establish a potential mechanism for such preferential priming, we examined the initial interactions between antigens and resident antigen-presenting cells (APCs) within the lung. We show that intranasally delivered antigens are preferentially taken up and can be presented to antigen-specific T cells by a resident population of CD11cbright APCs. Most of these antigen-loaded APCs remained within lung tissues, and migration into secondary lymphoid organs was not crucial for T cell priming to occur within the pulmonary tract. Furthermore, these pulmonary APCs demonstrated a marked expression of IL-6 and IL-10 within hours of antigen uptake, suggesting that resident tissue APCs have the capacity to promote Th2 T cell differentiation in situ.
PMCID: PMC151814  PMID: 12438442
9.  CD4+ T-Cell Effectors Inhibit Epstein-Barr Virus-Induced B-Cell Proliferation 
Journal of Virology  2001;75(8):3740-3752.
In immunodeficient hosts, Epstein-Barr virus (EBV) often induces extensive B-cell lymphoproliferative disease and lymphoma. Without effective in vitro immune surveillance, B cells infected by the virus readily form immortalized cell lines. In the regression assay, memory T cells inhibit the formation of foci of EBV-transformed B cells that follows recent in vitro infection by EBV. No one has yet addressed which T cell regulates the early proliferative phase of B cells newly infected by EBV. Using new quantitative methods, we analyzed T-cell surveillance of EBV-mediated B-cell proliferation. We found that CD4+ T cells play a significant role in limiting proliferation of newly infected, activated CD23+ B cells. In the absence of T cells, EBV-infected CD23+ B cells divided rapidly during the first 3 weeks after infection. Removal of CD4+ but not CD8+ T cells also abrogated immune control. Purified CD4+ T cells eliminated outgrowth when added to EBV-infected B cells. Thus, unlike the killing of EBV-infected lymphoblastoid cell lines, in which CD8+ cytolytic T cells play an essential role, prevention of early-phase EBV-induced B-cell proliferation requires CD4+ effector T cells.
PMCID: PMC114865  PMID: 11264363
10.  Alteration at a Single Amino Acid Residue in the T Cell Receptor α Chain Complementarity Determining Region 2 Changes the Differentiation of Naive Cd4 T Cells in Response to Antigen from T Helper Cell Type 1 (Th1) to Th2 
The Journal of Experimental Medicine  2000;191(12):2065-2074.
To study whether changes in the structure of a T cell receptor (TCR) at a single peptide-contacting residue could affect T cell priming with antigenic peptide, we made transgenic mice with a point mutation in the TCR α chain of the D10.G4.1 (D10) TCR and bred them to D10 β chain transgenic mice. The mutation consisted of a leucine to serine substitution at position 51 (L51S), which we had already established contacted the second amino acid of the peptide such that the response to the reference peptide was reduced by ∼100-fold. A mutation in the reference peptide CA134–146 (CA-WT) from the arginine at peptide position 2 to glycine (R2G) restored full response to this altered TCR. When we examined in vitro priming of naive CD4 T cells, we observed that the response to doses of CA-WT that induced T helper cell type 1 (Th1) responses in naive CD4 T cells from mice transgenic for the D10 TCR gave only Th2 responses in naive CD4 T cells derived from the L51S. However, when we primed the same T cells with the R2G peptide, we observed Th1 priming in both D10 and L51S naive CD4 T cells. We conclude from these data that a mutation in the TCR at a key position that contacts major histocompatibility complex–bound peptide is associated with a shift in T cell differentiation from Th1 to Th2.
PMCID: PMC2193209  PMID: 10859331
mice; transgenic; interferon type II; interleukin 4; peptides
11.  Combinatorial Effect of T-Cell Receptor Ligation and CD45 Isoform Expression on the Signaling Contribution of the Small GTPases Ras and Rap1 
Molecular and Cellular Biology  2000;20(23):8740-8747.
By using ligands with various affinities for the T-cell receptor (TCR) and by altering the contribution of the CD45 tyrosine phosphatase, the effects of the potency of TCR-induced signals on the function of small GTPases Ras and Rap1 were studied. T cells expressing low-molecular-weight CD45 isoforms (e.g., CD45RO) exhibited the strongest activation of the Ras-dependent Elk-1 transcription factor and the highest sensitivity to the inhibitory action of dominant negative mutant Ras compared to T cells expressing high-molecular-weight CD45 isoforms (ABC). Moreover, stimulation of CD45RO+, but not CD45ABC+, T cells with a high-affinity TCR ligand induced suboptimal Elk-1 activation compared with the stimulation induced by an intermediate-affinity TCR-ligand interaction. This observation suggested that the Ras-dependent signaling pathway is safeguarded in CD45RO+ expressors by a negative regulatory mechanism(s) which prohibits maximal activation of the Ras-dependent signaling events following high-avidity TCR-ligand engagement. Interestingly, the biochemical activity of another small GTPase, the Ras-like protein Rap1, which has been implicated in the functional suppression of Ras signaling, was inversely correlated with the extent of Elk-1 activation induced by different-affinity TCR ligands. Consistently, overexpression of putative Rap dominant negative mutant RapN17 or the physiologic inhibitor of Rap1, the Rap GTPase-activating protein RapGAP, augmented the Elk-1 response in CD45RO+ T cells. This is in contrast to the suppressive effect of RapN17 and RapGAP on CD45ABC+ T cells, underscoring the possibility that Rap1 can act as either a repressor or a potentiator of Ras effector signals, depending on CD45 isoform expression. These observations suggest that cells expressing distinct isoforms of CD45 employ different signal transduction schemes to optimize Ras-mediated signal transduction in activated T lymphocytes.
PMCID: PMC86498  PMID: 11073975
12.  T Helper 1 Cells and Interferon γ Regulate Allergic Airway Inflammation and Mucus Production 
The Journal of Experimental Medicine  1999;190(9):1309-1318.
CD4 T helper (Th) type 1 and Th2 cells have been identified in the airways of asthmatic patients. Th2 cells are believed to contribute to pathogenesis of the disease, but the role of Th1 cells is not well defined. In a mouse model, we previously reported that transferred T cell receptor–transgenic Th2 cells activated in the respiratory tract led to airway inflammation with many of the pathologic features of asthma, including airway eosinophilia and mucus production. Th1 cells caused inflammation with none of the pathology associated with asthma. In this report, we investigate the role of Th1 cells in regulating airway inflammation. When Th1 and Th2 cells are transferred together into recipient mice, there is a marked reduction in airway eosinophilia and mucus staining. To address the precise role of Th1 cells, we asked (i), Are Th2-induced responses inhibited by interferon (IFN)-γ? and (ii) Can Th1 cells induce eosinophilia and mucus in the absence of IFN-γ? In IFN-γ receptor−/− recipient mice exposed to inhaled antigen, the inhibitory effects of Th1 cells on both airway eosinophilia and mucus production were abolished. In the absence of IFN-γ receptor signaling, Th1 cells induced mucus but not eosinophilia. Thus, we have identified new regulatory pathways for mucus production; mucus can be induced by Th2 and non-Th2 inflammatory responses in the lung, both of which are inhibited by IFN-γ. The blockade of eosinophilia and mucus production by IFN-γ likely occurs through different inhibitory pathways that are activated downstream of Th2 cytokine secretion and require IFN-γ signaling in tissue of recipient mice.
PMCID: PMC2195688  PMID: 10544202
asthma; T helper cell type 1; T helper cell type 2; IFN-γ; mucus
13.  Th2 responses induced by epicutaneous or inhalational protein exposure are differentially dependent on IL-4 
Journal of Clinical Investigation  2000;105(6):765-775.
Atopic individuals are predisposed to mounting vigorous Th2-type immune responses to environmental allergens. To determine the factors responsible, animal models that closely mimic natural modes of allergen exposure should prove most informative. Therefore, we investigated the role of IL-4, a known Th2-promoting cytokine, in generation of Th2 responses after exposure of either the skin or airway to soluble protein. Compared with wild-type (WT) mice, IL-4–deficient (IL-4–/–) mice showed markedly impaired Th2 activation after primary exposure to inhaled ovalbumin (OVA), with decreased OVA-specific IgG1 and IgE, and significantly fewer eosinophils in bronchoalveolar lavage (BAL) fluid after airway challenge. In contrast, IL-4–/– mice initially exposed to epicutaneous (e.c.) OVA mounted Th2 responses equivalent to responses in WT mice, with high numbers of eosinophils in BAL fluid. Because Th2 responses were not induced by e.c. OVA exposure in Stat6–/– mice (mice lacking signal transducer and activator of transcription 6), the role of IL-13 was tested. In vivo depletion of IL-13 prevented Th2 responses induced by e.c. OVA exposure in IL-4–/– mice. These data demonstrate a marked difference in the IL-4 dependence of Th2 responses generated at two anatomic sites of natural allergen encounter and identify the skin as a particularly potent site for Th2 sensitization.
PMCID: PMC377464  PMID: 10727445
14.  Induction of Airway Mucus Production By T Helper 2 (Th2) Cells: A Critical Role For Interleukin 4 In Cell Recruitment But Not Mucus Production  
The Journal of Experimental Medicine  1997;186(10):1737-1747.
Airway inflammation is believed to stimulate mucus production in asthmatic patients. Increased mucus secretion is an important clinical symptom and contributes to airway obstruction in asthma. Activated CD4 Th1 and Th2 cells have both been identified in airway biopsies of asthmatics but their role in mucus production is not clear. Using CD4 T cells from mice transgenic for the OVA-specific TCR, we studied the role of Th1 and Th2 cells in airway inflammation and mucus production. Airway inflammation induced by Th2 cells was comprised of eosinophils and lymphocytes; features found in asthmatic patients. Additionally, there was a marked increase in mucus production in mice that received Th2 cells and inhaled OVA, but not in mice that received Th1 cells. However, OVA-specific Th2 cells from IL-4–deficient mice were not recruited to the lung and did not induce mucus production. When this defect in homing was overcome by administration of TNF-α, IL-4 −/− Th2 cells induced mucus as effectively as IL-4 +/+ Th2 cells. These studies establish a role for Th2 cells in mucus production and dissect the effector functions of IL-4 in these processes. These data suggest that IL-4 is crucial for Th2 cell recruitment to the lung and for induction of inflammation, but has no direct role in mucus production.
PMCID: PMC2199146  PMID: 9362533
15.  The Involvement of the Intestinal Microflora in the Expansion of CD4+ T Cells with a-Naive Phenotype in the Periphery 
Developmental Immunology  1992;2(2):141-150.
It is well known that immune reactivity declines with age. Recently, we demonstrated that the age-related decrease in IL-2 production by CD4+ T cells was accompanied by an increased production of IL-4 and interferon-γ,(IFN-γ). This age-related shift in the profile of lymphokine production was related to phenotypic changes within the CD4+ T-cell subset, that is, a decrease in the percentage of CD45RB++ CD4+ T cells and an increase in the percentage of Pgp-1+ CD4+ T cells. To study whether these age-related changes were due to previous antigenic exposure, we performed a phenotypic and functional analysis on splenic CD4+ T cells isolated from individual, germ-free (GF), specific pathogen-free (SPF), and clean conventional (CC) mice. Interestingly, the total number of splenic CD4+ T cells in GF mice was twofold lower as compared to age-matched SPF or CC mice, regardless whether mice were analyzed at young (10 weeks) or at advanced age (13-14 months). Unexpectedly, the phenotypic composition of the CD4+ T-cell subset was comparable in the GF, SPF, and CC mice as determined by the expression of CD45RB and Pgp-1, indicating that CD4+ T cells with a naive phenotype (CD45RB++ Pgp-1 –) were not enriched in GF mice. Moreover, at an age of 13–14 months, CD4+ T cells from GF mice frequently produced more IL-4 and IFN-γ, than their CC counterparts. These lymphokine data showed, therefore, that a relatively high proportion of CD4 T cells with a memory phenotype can also be defined in GF mice on the basis of their function. The contamination of GF mice with a colonization resistant factor (CRF flora) resulted in twofold higher numbers of splenic CD4+ T cells. Surprisingly, not only CD4+ T cells with a memory phenotype (CD45RB–/+ Pgp-1++) had expanded, but also CD4+ T cells with a naive (CD45RB++ Pgp-1–) phenotype. Our results, therefore, strongly suggest that the expansion of naive CD4+ T cells in the periphery is mediated by the intestinal microflora.
PMCID: PMC2275855  PMID: 1386544
CD4^+ T cells; germ-free; naive; memory; intestinal microflora

Results 1-15 (15)