Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Fibronectin type III domains engineered to bind CD40L: cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of two complexes 
Tn3 proteins, a novel class of binding molecules based on a fibronectin type III domain, have been cloned, expressed, purified and crystallized in complex with their cognate target.
Tn3 proteins are a novel class of binding molecules based on the third fibronectin type III domain of human tenascin C. Target-specific Tn3 proteins are selected from combinatorial libraries in which three surface-exposed loops have been diversified. Here, the cocrystallization of two different Tn3 proteins in complex with CD40L, a therapeutic target for immunological disease, is reported. These crystal structures are the first to be reported of Tn3 proteins and will help to reveal how these engineered molecules achieve specific recognition of a cognate target.
PMCID: PMC3758160  PMID: 23989160
fibronectin type III domains; CD40L
2.  Endogenous IL-11 Signaling Is Essential in Th2- and IL-13–Induced Inflammation and Mucus Production 
IL-11 and IL-11 receptor (R)α are induced by Th2 cytokines. However, the role(s) of endogenous IL-11 in antigen-induced Th2 inflammation has not been fully defined. We hypothesized that IL-11, signaling via IL-11Rα, plays an important role in aeroallergen-induced Th2 inflammation and mucus metaplasia. To test this hypothesis, we compared the responses induced by the aeroallergen ovalbumin (OVA) in wild-type (WT) and IL-11Rα–null mutant mice. We also generated and defined the effects of an antagonistic IL-11 mutein on pulmonary Th2 responses. Increased levels of IgE, eosinophilic tissue and bronchoalveolar lavage (BAL) inflammation, IL-13 production, and increased mucus production and secretion were noted in OVA-sensitized and -challenged WT mice. These responses were at least partially IL-11 dependent because each was decreased in mice with null mutations of IL-11Rα. Importantly, the administration of the IL-11 mutein to OVA-sensitized mice before aerosol antigen challenge also caused a significant decrease in OVA-induced inflammation, mucus responses, and IL-13 production. Intraperitoneal administration of the mutein to lung-specific IL-13–overexpressing transgenic mice also reduced BAL inflammation and airway mucus elaboration. These studies demonstrate that endogenous IL-11R signaling plays an important role in antigen-induced sensitization, eosinophilic inflammation, and airway mucus production. They also demonstrate that Th2 and IL-13 responses can be regulated by interventions that manipulate IL-11 signaling in the murine lung.
PMCID: PMC2586049  PMID: 18617680
IL-11; mutein; airway inflammation; mucus; IL-13
3.  SOCS-6 Binds to Insulin Receptor Substrate 4, and Mice Lacking the SOCS-6 Gene Exhibit Mild Growth Retardation 
Molecular and Cellular Biology  2002;22(13):4567-4578.
SOCS-6 is a member of the suppressor of cytokine signaling (SOCS) family of proteins (SOCS-1 to SOCS-7 and CIS) which each contain a central SH2 domain and a carboxyl-terminal SOCS box. SOCS-1, SOCS-2, SOCS-3, and CIS act to negatively regulate cytokine-induced signaling pathways; however, the actions of SOCS-4, SOCS-5, SOCS-6, and SOCS-7 remain less clear. Here we have used both biochemical and genetic approaches to examine the action of SOCS-6. We found that SOCS-6 and SOCS-7 are expressed ubiquitously in murine tissues. Like other SOCS family members, SOCS-6 binds to elongins B and C through its SOCS box, suggesting that it might act as an E3 ubiquitin ligase that targets proteins bound to its SH2 domain for ubiquitination and proteasomal degradation. We investigated the binding specificity of the SOCS-6 and SOCS-7 SH2 domains and found that they preferentially bound to phosphopeptides containing a valine in the phosphotyrosine (pY) +1 position and a hydrophobic residue in the pY +2 and pY +3 positions. In addition, these SH2 domains interacted with a protein complex consisting of insulin receptor substrate 4 (IRS-4), IRS-2, and the p85 regulatory subunit of phosphatidylinositol 3-kinase. To investigate the physiological role of SOCS-6, we generated mice lacking the SOCS-6 gene. SOCS-6−/− mice were born in a normal Mendelian ratio, were fertile, developed normally, and did not exhibit defects in hematopoiesis or glucose homeostasis. However, both male and female SOCS-6−/− mice weighed approximately 10% less than wild-type littermates.
PMCID: PMC133908  PMID: 12052866
The Journal of Cell Biology  1966;30(3):579-600.
A penetrated ovum was recovered from the oviduct of a 33 year old surgical patient who had had sexual intercourse 26 hr before the operation. The ovum was in the pronuclear stage. The ooplasmic organelles were mainly represented by mitochondria, endoplasmic reticulum components, and Golgi elements. Small vesicles were found in the space between the two sheets of the pronuclear envelope. These vesicles appeared to be morphologically similar to the ER vesicles in the ooplasm and were considered to be involved in pronuclear development. Numerous annulate lamellae were seen in the ooplasm as well as in the pronuclei. Ooplasmic crystalloids were also observed. These were thought to represent cytoplasmic yolk. Remnants of the penetrating spermatozoon were found in close relation to one of the pronuclei. The fine structure of the first and second polar body is also described. The nuclear complement of the first polar body consisted of isolated chromosomes, whereas the second polar body contained a membrane-bounded nucleus. In consideration of the possibility that polar body fertilization may take place, these differences in nuclear organization could be of importance. Other recognizable differences between the two polar bodies were presence of dense cortical granules and microvilli in the first polar body, and absence of these structures in the second. These dissimilarities were considered to be related to the organization of the egg cytoplasm at the time of polar body separation.
PMCID: PMC2107024  PMID: 6008199

Results 1-4 (4)