Search tips
Search criteria

Results 1-25 (118)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Improving Prediction of Type 1 Diabetes by testing Non-HLA Genetic Variants in addition to HLA Markers 
Pediatric diabetes  2013;15(5):355-362.
The purpose of this study was to explore whether non-HLA genetic markers can improve type 1 diabetes (T1D) prediction in a prospective cohort with high-risk HLA-DR,DQ genotypes.
The Diabetes Autoimmunity Study in the Young (DAISY) follows prospectively for development of T1D and islet autoimmunity (IA) children at increased genetic risk. A total of 1709 non-Hispanic White DAISY participants have been genotyped for 27 non-HLA single nucleotide polymorphisms and one microsatellite.
In multivariate analyses adjusting for family history and HLA-DR3/4 genotype, PTPN22 (rs2476601) and two UBASH3A (rs11203203 and rs9976767) SNPs were associated with development of IA (HR=1.87, 1.55 and 1.54 respectively, all p≤0.003), while GLIS3 and IL2RA showed borderline association with development of IA. INS, UBASH3A and IFIH1 were significantly associated with progression from IA to diabetes (HR=1.65, 1.44 and 1.47 respectively, all p≤0.04), while PTPN22 and IL27 showed borderline association with progression from IA to diabetes. In survival analysis, 45% of general population DAISY children with PTPN22 rs2476601 TT or HLA-DR3/4 and UBASH3A rs11203203 AA developed diabetes by age 15, compared to 3% of children with all other genotypes (p<0.0001). Addition of non-HLA markers to HLA-DR3/4,DQ8 did not improve diabetes prediction in first-degree relatives.
Addition of PTPN22 and UBASH3A SNPs to HLA-DR,DQ genotyping can improve T1D risk prediction.
PMCID: PMC4116638  PMID: 25075402
Type 1 diabetes; islet autoimmunity; non-HLA genetic markers; prediction
2.  Copper Metabolism Domain-containing 1 Represses Genes that Promote Inflammation and Protects Mice From Colitis and Colitis-associated Cancer 
Gastroenterology  2014;147(1):184-195.e3.
Activation of the transcription factor NFκB has been associated with development of inflammatory bowel disease (IBD). COMMD1, a regulator of various transport pathways, has been shown to limit NFκB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in humans.
We created mice with specific disruption of Commd1 in myeloid cells (Mye-K/O mice); we analyzed immune cell populations and functions and expression of genes regulated by NFκB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate (DSS), and colitis-associated cancer was induced by administration of DSS and azoxymethane. We measured levels of COMMD1 mRNA in colon biopsies from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis.
In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed reduced expression of COMMD1 in colon biopsies and circulating leukocytes from patients with IBD. We associated single nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis.
Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.
PMCID: PMC4086320  PMID: 24727021
mouse model; gene regulation; CD; UC
3.  Integrated Genomics of Crohn’s Disease Risk Variant Identifies a Role for CLEC12A in Antibacterial Autophagy 
Cell Reports  2015;11(12):1905-1918.
The polymorphism ATG16L1 T300A, associated with increased risk of Crohn’s disease, impairs pathogen defense mechanisms including selective autophagy, but specific pathway interactions altered by the risk allele remain unknown. Here, we use perturbational profiling of human peripheral blood cells to reveal that CLEC12A is regulated in an ATG16L1-T300A-dependent manner. Antibacterial autophagy is impaired in CLEC12A-deficient cells, and this effect is exacerbated in the presence of the ATG16L1∗300A risk allele. Clec12a−/− mice are more susceptible to Salmonella infection, supporting a role for CLEC12A in antibacterial defense pathways in vivo. CLEC12A is recruited to sites of bacterial entry, bacteria-autophagosome complexes, and sites of sterile membrane damage. Integrated genomics identified a functional interaction between CLEC12A and an E3-ubiquitin ligase complex that functions in antibacterial autophagy. These data identify CLEC12A as early adaptor molecule for antibacterial autophagy and highlight perturbational profiling as a method to elucidate defense pathways in complex genetic disease.
Graphical Abstract
•Integrated genomics reveals risk-allele-specific autophagy pathway interactions•CLEC12A is important for antibacterial autophagy in epithelial and immune cells•CLEC12A knockdown amplifies antibacterial autophagy defects in ATG16L1 ∗300A cells•Clec12a−/− mice are more susceptible to Salmonella infection in vivo
Although genome-wide association studies are valuable in identifying disease-associated loci, they produce only a partial view of pathogenesis. Using integrated, systems-level approaches to pinpoint genes that interact with the Crohn’s-disease-associated variant ATG16L1 T300A, Begun et al. identify CLEC12A as an innate defense gene that functions in antibacterial autophagy.
PMCID: PMC4507440  PMID: 26095365
4.  The genetics of East African populations: a Nilo-Saharan component in the African genetic landscape 
Scientific Reports  2015;5:9996.
East Africa is a strategic region to study human genetic diversity due to the presence of ethnically, linguistically, and geographically diverse populations. Here, we provide new insight into the genetic history of populations living in the Sudanese region of East Africa by analysing nine ethnic groups belonging to three African linguistic families: Niger-Kordofanian, Nilo-Saharan and Afro-Asiatic. A total of 500 individuals were genotyped for 200,000 single-nucleotide polymorphisms. Principal component analysis, clustering analysis using ADMIXTURE, FST statistics, and the three-population test were used to investigate the underlying genetic structure and ancestry of the different ethno-linguistic groups. Our analyses revealed a genetic component for Sudanese Nilo-Saharan speaking groups (Darfurians and part of Nuba populations) related to Nilotes of South Sudan, but not to other Sudanese populations or other sub-Saharan populations. Populations inhabiting the North of the region showed close genetic affinities with North Africa, with a component that could be remnant of North Africans before the migrations of Arabs from Arabia. In addition, we found very low genetic distances between populations in genes important for anti-malarial and anti-bacterial host defence, suggesting similar selective pressures on these genes and stressing the importance of considering functional pathways to understand the evolutionary history of populations.
PMCID: PMC4446898  PMID: 26017457
5.  Cell Specific eQTL Analysis without Sorting Cells 
PLoS Genetics  2015;11(5):e1005223.
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.
Author Summary
Many variants in the genome, including variants associated with disease, affect the expression of genes. These so-called expression quantitative trait loci (eQTL) can be used to gain insight in the downstream consequences of disease. While it has been shown that many disease-associated variants alter gene expression in a cell-type dependent manner, eQTL datasets for specific cell types may not always be available and their sample size is often limited. We present a method that is able to detect cell type specific effects within eQTL datasets that have been generated from whole tissues (which may be composed of many cell types), in our case whole blood. By combining numerous whole blood datasets through meta-analysis, we show that we are able to detect eQTL effects that are specific for neutrophils and lymphocytes (two blood cell types). Additionally, we show that the variants associated with some diseases may preferentially alter the gene expression in one of these cell types. We conclude that our method is an alternative method to detect cell type specific eQTL effects, that may complement generating cell type specific eQTL datasets and that may be applied on other cell types and tissues as well.
PMCID: PMC4425538  PMID: 25955312
6.  Gene-centric meta-analyses for central adiposity traits in up to 57 412 individuals of European descent confirm known loci and reveal several novel associations 
Yoneyama, Sachiko | Guo, Yiran | Lanktree, Matthew B. | Barnes, Michael R. | Elbers, Clara C. | Karczewski, Konrad J | Padmanabhan, Sandosh | Bauer, Florianne | Baumert, Jens | Beitelshees, Amber | Berenson, Gerald S. | Boer, Jolanda M.A. | Burke, Gregory | Cade, Brian | Chen, Wei | Cooper-Dehoff, Rhonda M. | Gaunt, Tom R. | Gieger, Christian | Gong, Yan | Gorski, Mathias | Heard-Costa, Nancy | Johnson, Toby | Lamonte, Michael J. | Mcdonough, Caitrin | Monda, Keri L. | Onland-Moret, N. Charlotte | Nelson, Christopher P. | O'Connell, Jeffrey R. | Ordovas, Jose | Peter, Inga | Peters, Annette | Shaffer, Jonathan | Shen, Haiqinq | Smith, Erin | Speilotes, Liz | Thomas, Fridtjof | Thorand, Barbara | Monique Verschuren, W. M. | Anand, Sonia S. | Dominiczak, Anna | Davidson, Karina W. | Hegele, Robert A. | Heid, Iris | Hofker, Marten H. | Huggins, Gordon S. | Illig, Thomas | Johnson, Julie A. | Kirkland, Susan | König, Wolfgang | Langaee, Taimour Y. | Mccaffery, Jeanne | Melander, Olle | Mitchell, Braxton D. | Munroe, Patricia | Murray, Sarah S. | Papanicolaou, George | Redline, Susan | Reilly, Muredach | Samani, Nilesh J. | Schork, Nicholas J. | Van Der Schouw, Yvonne T. | Shimbo, Daichi | Shuldiner, Alan R. | Tobin, Martin D. | Wijmenga, Cisca | Yusuf, Salim | Hakonarson, Hakon | Lange, Leslie A. | Demerath, Ellen W | Fox, Caroline S. | North, Kari E | Reiner, Alex P. | Keating, Brendan | Taylor, Kira C.
Human Molecular Genetics  2013;23(9):2498-2510.
Waist circumference (WC) and waist-to-hip ratio (WHR) are surrogate measures of central adiposity that are associated with adverse cardiovascular events, type 2 diabetes and cancer independent of body mass index (BMI). WC and WHR are highly heritable with multiple susceptibility loci identified to date. We assessed the association between SNPs and BMI-adjusted WC and WHR and unadjusted WC in up to 57 412 individuals of European descent from 22 cohorts collaborating with the NHLBI's Candidate Gene Association Resource (CARe) project. The study population consisted of women and men aged 20–80 years. Study participants were genotyped using the ITMAT/Broad/CARE array, which includes ∼50 000 cosmopolitan tagged SNPs across ∼2100 cardiovascular-related genes. Each trait was modeled as a function of age, study site and principal components to control for population stratification, and we conducted a fixed-effects meta-analysis. No new loci for WC were observed. For WHR analyses, three novel loci were significantly associated (P < 2.4 × 10−6). Previously unreported rs2811337-G near TMCC1 was associated with increased WHR (β ± SE, 0.048 ± 0.008, P = 7.7 × 10−9) as was rs7302703-G in HOXC10 (β = 0.044 ± 0.008, P = 2.9 × 10−7) and rs936108-C in PEMT (β = 0.035 ± 0.007, P = 1.9 × 10−6). Sex-stratified analyses revealed two additional novel signals among females only, rs12076073-A in SHC1 (β = 0.10 ± 0.02, P = 1.9 × 10−6) and rs1037575-A in ATBDB4 (β = 0.046 ± 0.01, P = 2.2 × 10−6), supporting an already established sexual dimorphism of central adiposity-related genetic variants. Functional analysis using ENCODE and eQTL databases revealed that several of these loci are in regulatory regions or regions with differential expression in adipose tissue.
PMCID: PMC3988452  PMID: 24345515
7.  Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels 
Genome Medicine  2015;7(1):30.
RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq samples in the public domain, we here studied to what extent eQTLs and ASE effects can be identified when using public RNA-seq data while deriving the genotypes from the RNA-sequencing reads themselves.
We downloaded the raw reads for all available human RNA-seq datasets. Using these reads we performed gene expression quantification. All samples were jointly normalized and subjected to a strict quality control. We also derived genotypes using the RNA-seq reads and used imputation to infer non-coding variants. This allowed us to perform eQTL mapping and ASE analyses jointly on all samples that passed quality control. Our results were validated using samples for which DNA-seq genotypes were available.
4,978 public human RNA-seq runs, representing many different tissues and cell-types, passed quality control. Even though these data originated from many different laboratories, samples reflecting the same cell type clustered together, suggesting that technical biases due to different sequencing protocols are limited. In a joint analysis on the 1,262 samples with high quality genotypes, we identified cis-eQTLs effects for 8,034 unique genes (at a false discovery rate ≤0.05). eQTL mapping on individual tissues revealed that a limited number of samples already suffice to identify tissue-specific eQTLs for known disease-associated genetic variants. Additionally, we observed strong ASE effects for 34 rare pathogenic variants, corroborating previously observed effects on the corresponding protein levels.
By deriving and imputing genotypes from RNA-seq data, it is possible to identify both eQTLs and ASE effects. Given the exponential growth of the number of publicly available RNA-seq samples, we expect this approach will become especially relevant for studying the effects of tissue-specific and rare pathogenic genetic variants to aid clinical interpretation of exome and genome sequencing.
Electronic supplementary material
The online version of this article (doi:10.1186/s13073-015-0152-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4423486  PMID: 25954321
8.  mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity 
Science (New York, N.Y.)  2014;345(6204):1250684.
Epigenetic reprogramming of myeloid cells by infection or vaccination, termed trained immunity, confers non-specific protection from secondary infections. We characterized genome-wide transcriptome and histone modification profiles of human monocytes trained with β-glucan and identified induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, lactate production, and NAD+/NADH ratio, reflecting a shift in the metabolism of trained monocytes with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1/Akt/HIF1α pathway. Inhibition of Akt, mTOR, or HIF1α blocked monocyte induction of trained immunity, whereas the AMPK activator metformin inhibited the innate immune response to fungal infection. Finally, mice with a myeloid cell-specific defect in HIF1α were unable to mount trained immunity against bacterial sepsis. In conclusion, Akt/mTOR/HIF1α-dependent induction of aerobic glycolysis represents the metabolic basis of trained immunity.
PMCID: PMC4226238  PMID: 25258083
9.  Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity 
Science (New York, N.Y.)  2014;345(6204):1251086.
Structured Abstract
Monocytes circulate in the bloodstream for up to 3–5 days. Concomitantly, immunological imprinting of either tolerance (immunosuppression) or trained immunity (innate immune memory) determines the functional fate of monocytes and monocyte-derived macrophages, as observed after infection or vaccination.
Purified circulating monocytes from healthy volunteers were differentiated under the homeostatic M-CSF concentrations present in human serum. During the first 24 hours, trained immunity was induced by β-glucan (BG) priming, while post-sepsis immunoparalysis was mimicked by exposure to LPS, generating endotoxin-induced tolerance. Epigenomic profiling of the histone marks H3K4me1, H3K4me3 and H3K27ac, DNase I accessibility and RNA sequencing were performed at both the start of the experiment (ex vivo monocytes) and at the end of the six days of in vitro culture (macrophages).
Compared to monocytes (Mo), naïve macrophages (Mf) display a remodeled metabolic enzyme repertoire and attenuated innate inflammatory pathways; most likely necessary to generate functional tissue macrophages. Epigenetic profiling uncovered ~8000 dynamic regions associated with ~11000 DNase I hypersensitive sites. Changes in histone acetylation identified most dynamic events. Furthermore, these regions of differential histone marks displayed some degree of DNase I accessibility that was already present in monocytes. H3K4me1 mark increased in parallel with de novo H3K27ac deposition at distal regulatory regions; H3K4me1 mark remained even after the loss of H3K27ac, marking decommissioned regulatory elements. β-glucan priming specifically induced ~3000 distal regulatory elements, whereas LPS-tolerization uniquely induced H3K27ac at ~500 distal regulatory regions.
At the transcriptional level, we identified co-regulated gene modules during monocyte to macrophage differentiation, as well as discordant modules between trained and tolerized cells. These indicate that training likely involves an increased expression of modules expressed in naïve macrophages, including genes that code for metabolic enzymes. On the other hand, endotoxin tolerance involves gene modules that are more active in monocytes than in naïve macrophages. About 12% of known human transcription factors display variation in expression during macrophage differentiation, training and tolerance. We also observed transcription factor motifs in DNase I hypersensitive sites at condition-specific dynamic epigenomic regions, implying that specific transcription factors are required for trained and tolerized macrophage epigenetic and transcriptional programs. Finally, our analyses and functional validation indicate that the inhibition of cAMP generation blocked trained immunity in vitro and during an in vivo model of lethal C. albicans infection, abolishing the protective effects of trained immunity.
We documented the importance of epigenetic regulation of the immunological pathways underlying monocyte-to-macrophage differentiation and trained immunity. These dynamic epigenetic elements may inform on potential pharmacological targets that modulate innate immunity. Altogether, we uncovered the epigenetic and transcriptional programs of monocyte differentiation to macrophages that distinguish tolerant and trained macrophage phenotypes, providing a resource to further understand and manipulate immune-mediated responses.
PMCID: PMC4242194  PMID: 25258085
10.  Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels 
van Leeuwen, Elisabeth M. | Karssen, Lennart C. | Deelen, Joris | Isaacs, Aaron | Medina-Gomez, Carolina | Mbarek, Hamdi | Kanterakis, Alexandros | Trompet, Stella | Postmus, Iris | Verweij, Niek | van Enckevort, David J. | Huffman, Jennifer E. | White, Charles C. | Feitosa, Mary F. | Bartz, Traci M. | Manichaikul, Ani | Joshi, Peter K. | Peloso, Gina M. | Deelen, Patrick | van Dijk, Freerk | Willemsen, Gonneke | de Geus, Eco J. | Milaneschi, Yuri | Penninx, Brenda W.J.H. | Francioli, Laurent C. | Menelaou, Androniki | Pulit, Sara L. | Rivadeneira, Fernando | Hofman, Albert | Oostra, Ben A. | Franco, Oscar H. | Leach, Irene Mateo | Beekman, Marian | de Craen, Anton J.M. | Uh, Hae-Won | Trochet, Holly | Hocking, Lynne J. | Porteous, David J. | Sattar, Naveed | Packard, Chris J. | Buckley, Brendan M. | Brody, Jennifer A. | Bis, Joshua C. | Rotter, Jerome I. | Mychaleckyj, Josyf C. | Campbell, Harry | Duan, Qing | Lange, Leslie A. | Wilson, James F. | Hayward, Caroline | Polasek, Ozren | Vitart, Veronique | Rudan, Igor | Wright, Alan F. | Rich, Stephen S. | Psaty, Bruce M. | Borecki, Ingrid B. | Kearney, Patricia M. | Stott, David J. | Adrienne Cupples, L. | Jukema, J. Wouter | van der Harst, Pim | Sijbrands, Eric J. | Hottenga, Jouke-Jan | Uitterlinden, Andre G. | Swertz, Morris A. | van Ommen, Gert-Jan B. | de Bakker, Paul I.W. | Eline Slagboom, P. | Boomsma, Dorret I. | Wijmenga, Cisca | van Duijn, Cornelia M.
Nature Communications  2015;6:6065.
Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR.
Frequencies of rare variants fluctuate over populations, hampering gene discovery. Here the authors use a population-specific reference panel, the Genome of the Netherlands, to discover four novel loci involved in lipid metabolism, including an exonic variant in ABCA6.
PMCID: PMC4366498  PMID: 25751400
11.  Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci 
Nature genetics  2010;43(1):17-19.
Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4–7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 × 10−16 and P = 4.1 × 10−8, respectively).
PMCID: PMC4354850  PMID: 21151127
12.  THEMIS and PTPRK in celiac intestinal mucosa: coexpression in disease and after in vitro gliadin challenge 
Celiac disease (CD) is an immune mediated, polygenic disorder, where HLA-DQ2/DQ8 alleles contribute around 35% to genetic risk, but several other genes are also involved. Genome-wide association studies (GWASs) and the more recent immunochip genotyping projects have fine-mapped 39 regions of genetic susceptibility to the disease, most of which harbor candidate genes that could participate in this disease process. We focused our attention to the GWAS peak on chr6: 127.99–128.38 Mb, a region including two genes, thymocyte-expressed molecule involved in selection (THEMIS) and protein tyrosine phosphatase, receptor type, kappa (PTPRK), both of which have immune-related functions. The aim of this work was to evaluate the expression levels of these two genes in duodenal mucosa of active and treated CD patients and in controls, and to determine whether SNPs (rs802734, rs55743914, rs72975916, rs10484718 and rs9491896) associated with CD have any influence on gene expression. THEMIS showed higher expression in active CD compared with treated patients and controls, whereas PTPRK showed lower expression. Our study confirmed the association of this region with CD in our population, but only the genotype of rs802734 showed some influence in the expression of THEMIS. On the other hand, we found a significant positive correlation between THEMIS and PTPRK mRNA levels in CD patients but not in controls. Our results suggest a possible role for both candidate genes in CD pathogenesis and the existence of complex, regulatory relationships that reside in the vast non-coding, functional intergenic regions of the genome. Further investigation is needed to clarify the impact of the disease-associated SNPs on gene function.
PMCID: PMC3925264  PMID: 23820479
celiac disease; genetic association; THEMIS; PTPRK; gene expression
13.  Genome-Wide Study of Percent Emphysema on Computed Tomography in the General Population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study 
Rationale: Pulmonary emphysema overlaps partially with spirometrically defined chronic obstructive pulmonary disease and is heritable, with moderately high familial clustering.
Objectives: To complete a genome-wide association study (GWAS) for the percentage of emphysema-like lung on computed tomography in the Multi-Ethnic Study of Atherosclerosis (MESA) Lung/SNP Health Association Resource (SHARe) Study, a large, population-based cohort in the United States.
Methods: We determined percent emphysema and upper-lower lobe ratio in emphysema defined by lung regions less than −950 HU on cardiac scans. Genetic analyses were reported combined across four race/ethnic groups: non-Hispanic white (n = 2,587), African American (n = 2,510), Hispanic (n = 2,113), and Chinese (n = 704) and stratified by race and ethnicity.
Measurements and Main Results: Among 7,914 participants, we identified regions at genome-wide significance for percent emphysema in or near SNRPF (rs7957346; P = 2.2 × 10−8) and PPT2 (rs10947233; P = 3.2 × 10−8), both of which replicated in an additional 6,023 individuals of European ancestry. Both single-nucleotide polymorphisms were previously implicated as genes influencing lung function, and analyses including lung function revealed independent associations for percent emphysema. Among Hispanics, we identified a genetic locus for upper-lower lobe ratio near the α-mannosidase–related gene MAN2B1 (rs10411619; P = 1.1 × 10−9; minor allele frequency [MAF], 4.4%). Among Chinese, we identified single-nucleotide polymorphisms associated with upper-lower lobe ratio near DHX15 (rs7698250; P = 1.8 × 10−10; MAF, 2.7%) and MGAT5B (rs7221059; P = 2.7 × 10−8; MAF, 2.6%), which acts on α-linked mannose. Among African Americans, a locus near a third α-mannosidase–related gene, MAN1C1 (rs12130495; P = 9.9 × 10−6; MAF, 13.3%) was associated with percent emphysema.
Conclusions: Our results suggest that some genes previously identified as influencing lung function are independently associated with emphysema rather than lung function, and that genes related to α-mannosidase may influence risk of emphysema.
PMCID: PMC3977717  PMID: 24383474
emphysema; computed tomography; multiethnic; cohort study; genetic association
14.  Polymorphisms Near TBX5 and GDF7 Are Associated With Increased Risk for Barrett’s Esophagus 
Palles, Claire | Chegwidden, Laura | Li, Xinzhong | Findlay, John M. | Farnham, Garry | Castro Giner, Francesc | Peppelenbosch, Maikel P. | Kovac, Michal | Adams, Claire L. | Prenen, Hans | Briggs, Sarah | Harrison, Rebecca | Sanders, Scott | MacDonald, David | Haigh, Chris | Tucker, Art | Love, Sharon | Nanji, Manoj | deCaestecker, John | Ferry, David | Rathbone, Barrie | Hapeshi, Julie | Barr, Hugh | Moayyedi, Paul | Watson, Peter | Zietek, Barbara | Maroo, Neera | Gay, Laura | Underwood, Tim | Boulter, Lisa | McMurtry, Hugh | Monk, David | Patel, Praful | Ragunath, Krish | Al Dulaimi, David | Murray, Iain | Koss, Konrad | Veitch, Andrew | Trudgill, Nigel | Nwokolo, Chuka | Rembacken, Bjorn | Atherfold, Paul | Green, Elaine | Ang, Yeng | Kuipers, Ernst J. | Chow, Wu | Paterson, Stuart | Kadri, Sudarshan | Beales, Ian | Grimley, Charles | Mullins, Paul | Beckett, Conrad | Farrant, Mark | Dixon, Andrew | Kelly, Sean | Johnson, Matthew | Wajed, Shahjehan | Dhar, Anjan | Sawyer, Elinor | Roylance, Rebecca | Onstad, Lynn | Gammon, Marilie D. | Corley, Douglas A. | Shaheen, Nicholas J. | Bird, Nigel C. | Hardie, Laura J. | Reid, Brian J. | Ye, Weimin | Liu, Geoffrey | Romero, Yvonne | Bernstein, Leslie | Wu, Anna H. | Casson, Alan G. | Fitzgerald, Rebecca | Whiteman, David C. | Risch, Harvey A. | Levine, David M. | Vaughan, Tom L. | Verhaar, Auke P. | van den Brande, Jan | Toxopeus, Eelke L. | Spaander, Manon C. | Wijnhoven, Bas P.L. | van der Laan, Luc J.W. | Krishnadath, Kausilia | Wijmenga, Cisca | Trynka, Gosia | McManus, Ross | Reynolds, John V. | O’Sullivan, Jacintha | MacMathuna, Padraic | McGarrigle, Sarah A. | Kelleher, Dermot | Vermeire, Severine | Cleynen, Isabelle | Bisschops, Raf | Tomlinson, Ian | Jankowski, Janusz
Gastroenterology  2015;148(2):367-378.
Background & Aims
Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations.
We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls.
We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09–1.18; P = 1.8 × 10−11) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86–0.93; P = 7.5 × 10−9). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87–0.93; P = 3.72 × 10−9).
We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response.
PMCID: PMC4315134  PMID: 25447851
EAC; Intestinal Metaplasia; Susceptibility; Cancer; ASE, allele-specific expression; BE, Barrett’s esophagus; BEACON, Barrett's and Esophageal Adenocarcinoma Consortium; CI, confidence interval; EAC, esophageal adenocarcinoma; eQTL, expression quantitative trait locus; GWAS, genome-wide association study; LD, linkage disequilibrium; OR, odds ratio; PC, principal component; SNP, single nucleotide polymorphism; TCGA, The Cancer Genome Atlas
15.  Genome-wide association analysis identifies six new loci associated with forced vital capacity 
Loth, Daan W. | Artigas, María Soler | Gharib, Sina A. | Wain, Louise V. | Franceschini, Nora | Koch, Beate | Pottinger, Tess | Smith, Albert Vernon | Duan, Qing | Oldmeadow, Chris | Lee, Mi Kyeong | Strachan, David P. | James, Alan L. | Huffman, Jennifer E. | Vitart, Veronique | Ramasamy, Adaikalavan | Wareham, Nicholas J. | Kaprio, Jaakko | Wang, Xin-Qun | Trochet, Holly | Kähönen, Mika | Flexeder, Claudia | Albrecht, Eva | Lopez, Lorna M. | de Jong, Kim | Thyagarajan, Bharat | Alves, Alexessander Couto | Enroth, Stefan | Omenaas, Ernst | Joshi, Peter K. | Fall, Tove | Viňuela, Ana | Launer, Lenore J. | Loehr, Laura R. | Fornage, Myriam | Li, Guo | Wilk, Jemma B. | Tang, Wenbo | Manichaikul, Ani | Lahousse, Lies | Harris, Tamara B. | North, Kari E. | Rudnicka, Alicja R. | Hui, Jennie | Gu, Xiangjun | Lumley, Thomas | Wright, Alan F. | Hastie, Nicholas D. | Campbell, Susan | Kumar, Rajesh | Pin, Isabelle | Scott, Robert A. | Pietiläinen, Kirsi H. | Surakka, Ida | Liu, Yongmei | Holliday, Elizabeth G. | Schulz, Holger | Heinrich, Joachim | Davies, Gail | Vonk, Judith M. | Wojczynski, Mary | Pouta, Anneli | Johansson, Åsa | Wild, Sarah H. | Ingelsson, Erik | Rivadeneira, Fernando | Völzke, Henry | Hysi, Pirro G. | Eiriksdottir, Gudny | Morrison, Alanna C. | Rotter, Jerome I. | Gao, Wei | Postma, Dirkje S. | White, Wendy B. | Rich, Stephen S. | Hofman, Albert | Aspelund, Thor | Couper, David | Smith, Lewis J. | Psaty, Bruce M. | Lohman, Kurt | Burchard, Esteban G. | Uitterlinden, André G. | Garcia, Melissa | Joubert, Bonnie R. | McArdle, Wendy L. | Musk, A. Bill | Hansel, Nadia | Heckbert, Susan R. | Zgaga, Lina | van Meurs, Joyce B.J. | Navarro, Pau | Rudan, Igor | Oh, Yeon-Mok | Redline, Susan | Jarvis, Deborah | Zhao, Jing Hua | Rantanen, Taina | O’Connor, George T. | Ripatti, Samuli | Scott, Rodney J. | Karrasch, Stefan | Grallert, Harald | Gaddis, Nathan C. | Starr, John M. | Wijmenga, Cisca | Minster, Ryan L. | Lederer, David J. | Pekkanen, Juha | Gyllensten, Ulf | Campbell, Harry | Morris, Andrew P. | Gläser, Sven | Hammond, Christopher J. | Burkart, Kristin M. | Beilby, John | Kritchevsky, Stephen B. | Gudnason, Vilmundur | Hancock, Dana B. | Williams, O. Dale | Polasek, Ozren | Zemunik, Tatijana | Kolcic, Ivana | Petrini, Marcy F. | Wjst, Matthias | Kim, Woo Jin | Porteous, David J. | Scotland, Generation | Smith, Blair H. | Viljanen, Anne | Heliövaara, Markku | Attia, John R. | Sayers, Ian | Hampel, Regina | Gieger, Christian | Deary, Ian J. | Boezen, H. Marike | Newman, Anne | Jarvelin, Marjo-Riitta | Wilson, James F. | Lind, Lars | Stricker, Bruno H. | Teumer, Alexander | Spector, Timothy D. | Melén, Erik | Peters, Marjolein J. | Lange, Leslie A. | Barr, R. Graham | Bracke, Ken R. | Verhamme, Fien M. | Sung, Joohon | Hiemstra, Pieter S. | Cassano, Patricia A. | Sood, Akshay | Hayward, Caroline | Dupuis, Josée | Hall, Ian P. | Brusselle, Guy G. | Tobin, Martin D. | London, Stephanie J.
Nature genetics  2014;46(7):669-677.
Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR-129-2/HSD17B12, PRDM11, WWOX, and KCNJ2. Two (GSTCD and PTCH1) loci previously associated with spirometric measures were related to FVC. Newly implicated regions were followed-up in samples of African American, Korean, Chinese, and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and pathogenesis of restrictive lung disease.
PMCID: PMC4140093  PMID: 24929828
16.  Impact of Global Fxr Deficiency on Experimental Acute Pancreatitis and Genetic Variation in the FXR Locus in Human Acute Pancreatitis 
PLoS ONE  2014;9(12):e114393.
Infectious complications often occur in acute pancreatitis, related to impaired intestinal barrier function, with prolonged disease course and even mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR), which is expressed in the ileum, liver and other organs including the pancreas, exhibits anti-inflammatory effects by inhibiting NF-κB activation and is implicated in maintaining intestinal barrier integrity and preventing bacterial overgrowth and translocation. Here we explore, with the aid of complementary animal and human experiments, the potential role of FXR in acute pancreatitis.
Experimental acute pancreatitis was induced using the CCK-analogue cerulein in wild-type and Fxr-/- mice. Severity of acute pancreatitis was assessed using histology and a semi-quantitative scoring system. Ileal permeability was analyzed in vitro by Ussing chambers and an in vivo permeability assay. Gene expression of Fxr and Fxr target genes was studied by quantitative RT-PCR. Serum FGF19 levels were determined by ELISA in acute pancreatitis patients and healthy volunteers. A genetic association study in 387 acute pancreatitis patients and 853 controls was performed using 9 tagging single nucleotide polymorphisms (SNPs) covering the complete FXR gene and two additional functional SNPs.
In wild-type mice with acute pancreatitis, ileal transepithelial resistance was reduced and ileal mRNA expression of Fxr target genes Fgf15, SHP, and IBABP was decreased. Nevertheless, Fxr-/- mice did not exhibit a more severe acute pancreatitis than wild-type mice. In patients with acute pancreatitis, FGF19 levels were lower than in controls. However, there were no associations of FXR SNPs or haplotypes with susceptibility to acute pancreatitis, or its course, outcome or etiology.
We found no evidence for a major role of FXR in acute human or murine pancreatitis. The observed altered Fxr activity during the course of disease may be a secondary phenomenon.
PMCID: PMC4255038  PMID: 25470824
17.  Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci 
Nature genetics  2010;42(6):508-514.
To identify novel genetic risk factors for rheumatoid arthritis (RA), we conducted a genome-wide association study (GWAS) meta-analysis of 5,539 autoantibody positive RA cases and 20,169 controls of European descent, followed by replication in an independent set of 6,768 RA cases and 8,806 controls. Of 34 SNPs selected for replication, 7 novel RA risk alleles were identified at genome-wide significance (P<5×10−8) in analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5, and PXK. We also refined the risk alleles at two established RA risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed RA risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P<0.05, many of which are validated autoimmune risk alleles, suggesting that most represent bona fide RA risk alleles.
PMCID: PMC4243840  PMID: 20453842
18.  Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis 
The European respiratory journal  2014;44(4):860-872.
Asthma and chronic obstructive pulmonary disease (COPD) are thought to share a genetic background (“Dutch hypothesis”).
We investigated whether asthma and COPD have common underlying genetic factors, performing genome-wide association studies for both asthma and COPD and combining the results in meta-analyses.
Three loci showed potential involvement in both diseases: chr2p24.3, chr5q23.1 and chr13q14.2, containing DDX1, COMMD10 (both participating in the NFκβ pathway) and GNG5P5, respectively. SNP rs9534578 in GNG5P5 reached genome-wide significance after first stage replication (p=9.96·*10−9). The second stage replication in seven independent cohorts provided no significant replication. eQTL analysis in blood and lung on the top 20 associated SNPs identified two SNPs in COMMD10 influencing gene expression.
Inflammatory processes differ in asthma and COPD and are mediated by NFκβ, which could be driven by the same underlying genes, COMMD10 and DDX1. None of the SNPs reached genome-wide significance. Our eQTL studies support a functional role of two COMMD10 SNPs, since they influence gene expression in both blood cells and lung tissue. Our findings either suggest that there is no common genetic component in asthma and COPD or, alternatively, different environmental factors, like lifestyle and occupation in different countries and continents may have obscured the genetic common contribution.
PMCID: PMC4217133  PMID: 24993907
19.  Improved imputation quality of low-frequency and rare variants in European samples using the ‘Genome of The Netherlands' 
European Journal of Human Genetics  2014;22(11):1321-1326.
Although genome-wide association studies (GWAS) have identified many common variants associated with complex traits, low-frequency and rare variants have not been interrogated in a comprehensive manner. Imputation from dense reference panels, such as the 1000 Genomes Project (1000G), enables testing of ungenotyped variants for association. Here we present the results of imputation using a large, new population-specific panel: the Genome of The Netherlands (GoNL). We benchmarked the performance of the 1000G and GoNL reference sets by comparing imputation genotypes with ‘true' genotypes typed on ImmunoChip in three European populations (Dutch, British, and Italian). GoNL showed significant improvement in the imputation quality for rare variants (MAF 0.05–0.5%) compared with 1000G. In Dutch samples, the mean observed Pearson correlation, r2, increased from 0.61 to 0.71. We also saw improved imputation accuracy for other European populations (in the British samples, r2 improved from 0.58 to 0.65, and in the Italians from 0.43 to 0.47). A combined reference set comprising 1000G and GoNL improved the imputation of rare variants even further. The Italian samples benefitted the most from this combined reference (the mean r2 increased from 0.47 to 0.50). We conclude that the creation of a large population-specific reference is advantageous for imputing rare variants and that a combined reference panel across multiple populations yields the best imputation results.
PMCID: PMC4200431  PMID: 24896149
genotype imputation; GWAS; GoNL; rare variants; reference sets; reference panel
20.  Autophagy Controls BCG-Induced Trained Immunity and the Response to Intravesical BCG Therapy for Bladder Cancer 
PLoS Pathogens  2014;10(10):e1004485.
The anti-tuberculosis-vaccine Bacillus Calmette-Guérin (BCG) is the most widely used vaccine in the world. In addition to its effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects against certain forms of malignancy and against infections with unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are mediated through epigenetic reprogramming of monocytes, a process called trained immunity. In the present study we demonstrate that autophagy contributes to trained immunity induced by BCG. Pharmacologic inhibition of autophagy blocked trained immunity induced in vitro by stimuli such as β–glucans or BCG. Single nucleotide polymorphisms (SNPs) in the autophagy genes ATG2B (rs3759601) and ATG5 (rs2245214) influenced both the in vitro and in vivo training effect of BCG upon restimulation with unrelated bacterial or fungal stimuli. Furthermore, pharmacologic or genetic inhibition of autophagy blocked epigenetic reprogramming of monocytes at the level of H3K4 trimethylation. Finally, we demonstrate that rs3759601 in ATG2B correlates with progression and recurrence of bladder cancer after BCG intravesical instillation therapy. These findings identify a key role of autophagy for the nonspecific protective effects of BCG.
Author Summary
Next to its effects against tuberculosis, BCG vaccination also induces non-specific beneficial effects on immune cells to increase their ability to control unrelated pathogens. It has been recently proposed that the non-specific effects of BCG are mediated through epigenetic reprogramming of monocytes, a process called trained immunity. Little is known regarding the intracellular events controlling its induction. In this study we identified autophagy as a key player in trained immunity. Pharmacological inhibition of autophagy as well as polymorphisms in autophagy-related genes blocked BCG-induced trained immunity. Furthermore, BCG vaccine is also used to treat bladder cancer. Genetic polymorphisms in autophagy-related genes correlated with progression and recurrence of bladder cancer after treatment with BCG therapy. These findings open new possibilities for improvement of future BCG-based vaccines to be used against infections and malignancies.
PMCID: PMC4214925  PMID: 25356988
21.  Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity 
Genome Medicine  2014;6(10):88.
Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes.
We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4+ and naive CD8+ T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells).
We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8+ T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved.
The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways.
Electronic supplementary material
The online version of this article (doi:10.1186/s13073-014-0088-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4240855  PMID: 25419237
22.  Genetic and epigenetic regulation of gene expression in fetal and adult human livers 
BMC Genomics  2014;15(1):860.
The liver plays a central role in the maintenance of homeostasis and health in general. However, there is substantial inter-individual variation in hepatic gene expression, and although numerous genetic factors have been identified, less is known about the epigenetic factors.
By analyzing the methylomes and transcriptomes of 14 fetal and 181 adult livers, we identified 657 differentially methylated genes with adult-specific expression, these genes were enriched for transcription factor binding sites of HNF1A and HNF4A. We also identified 1,000 genes specific to fetal liver, which were enriched for GATA1, STAT5A, STAT5B and YY1 binding sites. We saw strong liver-specific effects of single nucleotide polymorphisms on both methylation levels (28,447 unique CpG sites (meQTL)) and gene expression levels (526 unique genes (eQTL)), at a false discovery rate (FDR) < 0.05. Of the 526 unique eQTL associated genes, 293 correlated significantly not only with genetic variation but also with methylation levels. The tissue-specificities of these associations were analyzed in muscle, subcutaneous adipose tissue and visceral adipose tissue. We observed that meQTL were more stable between tissues than eQTL and a very strong tissue-specificity for the identified associations between CpG methylation and gene expression.
Our analyses generated a comprehensive resource of factors involved in the regulation of hepatic gene expression, and allowed us to estimate the proportion of variation in gene expression that could be attributed to genetic and epigenetic variation, both crucial to understanding differences in drug response and the etiology of liver diseases.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-860) contains supplementary material, which is available to authorized users.
PMCID: PMC4287518  PMID: 25282492
eQTL; meQTL; eQTM; Gene expression; Methylation; HumanMethylation450; Liver
23.  Genome-wide association study identifies a sequence variant within the DAB2IP gene conferring susceptibility to abdominal aortic aneurysm 
Gretarsdottir, Solveig | Baas, Annette F | Thorleifsson, Gudmar | Holm, Hilma | den Heijer, Martin | de Vries, Jean-Paul P M | Kranendonk, Steef E | Zeebregts, Clark J A M | van Sterkenburg, Steven M | Geelkerken, Robert H | van Rij, Andre M | Williams, Michael J A | Boll, Albert P M | Kostic, Jelena P | Jonasdottir, Adalbjorg | Jonasdottir, Aslaug | Walters, G Bragi | Masson, Gisli | Sulem, Patrick | Saemundsdottir, Jona | Mouy, Magali | Magnusson, Kristinn P | Tromp, Gerard | Elmore, James R | Sakalihasan, Natzi | Limet, Raymond | Defraigne, Jean-Olivier | Ferrell, Robert E | Ronkainen, Antti | Ruigrok, Ynte M | Wijmenga, Cisca | Grobbee, Diederick E | Shah, Svati H | Granger, Christopher B | Quyyumi, Arshed A | Vaccarino, Viola | Patel, Riyaz S | Zafari, A Maziar | Levey, Allan I | Austin, Harland | Girelli, Domenico | Pignatti, Pier Franco | Olivieri, Oliviero | Martinelli, Nicola | Malerba, Giovanni | Trabetti, Elisabetta | Becker, Lewis C | Becker, Diane M | Reilly, Muredach P | Rader, Daniel J | Mueller, Thomas | Dieplinger, Benjamin | Haltmayer, Meinhard | Urbonavicius, Sigitas | Lindblad, Bengt | Gottsäter, Anders | Gaetani, Eleonora | Pola, Roberto | Wells, Philip | Rodger, Marc | Forgie, Melissa | Langlois, Nicole | Corral, Javier | Vicente, Vicente | Fontcuberta, Jordi | España, Francisco | Grarup, Niels | Jørgensen, Torben | Witte, Daniel R | Hansen, Torben | Pedersen, Oluf | Aben, Katja K | de Graaf, Jacqueline | Holewijn, Suzanne | Folkersen, Lasse | Franco-Cereceda, Anders | Eriksson, Per | Collier, David A | Stefansson, Hreinn | Steinthorsdottir, Valgerdur | Rafnar, Thorunn | Valdimarsson, Einar M | Magnadottir, Hulda B | Sveinbjornsdottir, Sigurlaug | Olafsson, Isleifur | Magnusson, Magnus Karl | Palmason, Robert | Haraldsdottir, Vilhelmina | Andersen, Karl | Onundarson, Pall T | Thorgeirsson, Gudmundur | Kiemeney, Lambertus A | Powell, Janet T | Carey, David J | Kuivaniemi, Helena | Lindholt, Jes S | Jones, Gregory T | Kong, Augustine | Blankensteijn, Jan D | Matthiasson, Stefan E | Thorsteinsdottir, Unnur | Stefansson, Kari
Nature genetics  2010;42(8):692-697.
We performed a genome-wide association study on 1,292 individuals with abdominal aortic aneurysms (AAAs) and 30,503 controls from Iceland and The Netherlands, with a follow-up of top markers in up to 3,267 individuals with AAAs and 7,451 controls. The A allele of rs7025486 on 9q33 was found to associate with AAA, with an odds ratio (OR) of 1.21 and P = 4.6 × 10−10. In tests for association with other vascular diseases, we found that rs7025486[A] is associated with early onset myocardial infarction (OR = 1.18, P = 3.1 × 10−5), peripheral arterial disease (OR = 1.14, P = 3.9 × 10−5) and pulmonary embolism (OR = 1.20, P = 0.00030), but not with intracranial aneurysm or ischemic stroke. No association was observed between rs7025486[A] and common risk factors for arterial and venous diseases—that is, smoking, lipid levels, obesity, type 2 diabetes and hypertension. Rs7025486 is located within DAB2IP, which encodes an inhibitor of cell growth and survival.
PMCID: PMC4157066  PMID: 20622881
24.  Card9 Mediates Intestinal Epithelial Cell Restitution, T-Helper 17 Responses, and Control of Bacterial Infection in Mice 
Gastroenterology  2013;145(3):591-601.e3.
Caspase recruitment domain 9 (CARD9) is an adaptor protein that integrates signals downstream of pattern recognition receptors. CARD9 has been associated with autoinflammatory disorders, and loss-of-function mutations have been associated with chronic mucocutaneous candidiasis, but the role of CARD9 in intestinal inflammation is unknown. We characterized the role of Card9 in mucosal immune responses to intestinal epithelial injury and infection.
We induced intestinal inflammation in Card9-null mice by administration of dextran sulfate sodium (DSS) or Citrobacter rodentium. We analyzed body weight, assessed inflammation by histology, and measured levels of cytokines and chemokines using quantitative reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Cell populations were compared between wild-type and Card9-null mice by flow cytometry analysis.
Colon tissues and mesenteric lymph nodes of Card9-null mice had reduced levels of interleukin (IL)-6, interferon-γ, and T-helper (Th)17 cytokines after administration of DSS, compared with wild-type mice. IL-17A and IL-22 expression were reduced in the recovery phase after DSS administration, coincident with decreased expression of antimicrobial peptides and the chemokine (C-C motif) ligand 20 (Ccl20). Although Card9-null mice had more intestinal fungi based on 18S analysis, their Th17 responses remained defective even when an antifungal agent was administered throughout DSS exposure. Moreover, Card9-null mice had impaired immune responses to C rodentium, characterized by decreased levels of colonic IL-6, IL-17A, IL-22, and regenerating islet-derived 3 gamma (RegIIIγ), as well as fewer IL-22—producing innate lymphoid cells (ILCs) in colon lamina propria.
The adaptor protein CARD9 coordinates Th17- and innate lymphoid cell-mediated intestinal immune responses after epithelial injury in mice.
PMCID: PMC3781941  PMID: 23732773
Colitis; ILC; Inflammatory Response; Mouse Model
25.  Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12 
Neurology  2014;83(8):678-685.
To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases.
Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico “look-up” of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls.
In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07–1.13], p = 7.12 × 10−11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90–1.17], p = 0.695).
Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.
PMCID: PMC4150131  PMID: 25031287

Results 1-25 (118)