PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (64)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error 
Human Molecular Genetics  2013;22(13):2754-2764.
Visual refractive errors (REs) are complex genetic traits with a largely unknown etiology. To date, genome-wide association studies (GWASs) of moderate size have identified several novel risk markers for RE, measured here as mean spherical equivalent (MSE). We performed a GWAS using a total of 7280 samples from five cohorts: the Age-Related Eye Disease Study (AREDS); the KORA study (‘Cooperative Health Research in the Region of Augsburg’); the Framingham Eye Study (FES); the Ogliastra Genetic Park-Talana (OGP-Talana) Study and the Multiethnic Study of Atherosclerosis (MESA). Genotyping was performed on Illumina and Affymetrix platforms with additional markers imputed to the HapMap II reference panel. We identified a new genome-wide significant locus on chromosome 16 (rs10500355, P = 3.9 × 10−9) in a combined discovery and replication set (26 953 samples). This single nucleotide polymorphism (SNP) is located within the RBFOX1 gene which is a neuron-specific splicing factor regulating a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins.
doi:10.1093/hmg/ddt116
PMCID: PMC3674806  PMID: 23474815
2.  NPHP4 Variants are Associated with Pleiotropic Heart Malformations 
Circulation research  2012;110(12):1564-1574.
Rationale
Congenital heart malformations are a major cause of morbidity and mortality especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs.
Objective
To identify genetic mutations causing cardiac laterality defects.
Methods and Results
We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double outlet right ventricle, atrio-ventricular septal defects and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified eight additional missense variants that were absent or very rare in controls. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer’s vesicle (KV), which generate asymmetric fluid flow necessary for normal L-R asymmetry.
Conclusions
NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of KV cilia and is required for global L-R patterning.
doi:10.1161/CIRCRESAHA.112.269795
PMCID: PMC3916111  PMID: 22550138
Congenital heart malfortmations; heterotaxy; nphp4; cilia; zebrafish
3.  Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15.2 region 
Annals of the rheumatic diseases  2012;72(3):427-436.
Objectives
Chronic widespread pain (CWP) is a common disorder affecting ~10% of the general population and has an estimated heritability of 48-52%. In the first large-scale genome-wide association study (GWAS) meta-analysis, we aimed to identify common genetic variants associated with CWP.
Methods
We conducted a GWAS meta-analysis in 1,308 female CWP cases and 5,791 controls of European descent, and replicated the effects of the genetic variants with suggestive evidence for association in 1,480 CWP cases and 7,989 controls (P<1×10−5). Subsequently, we studied gene expression levels of the nearest genes in two chronic inflammatory pain mouse models, and examined 92 genetic variants previously described associated with pain.
Results
The minor C-allele of rs13361160 on chromosome 5p15.2, located upstream of CCT5 and downstream of FAM173B, was found to be associated with a 30% higher risk of CWP (MAF=43%; OR=1.30, 95%CI=1.19-1.42, P=1.2×10−8). Combined with the replication, we observed a slightly attenuated OR of 1.17 (95%CI=1.10-1.24, P=4.7×10−7) with moderate heterogeneity (I2=28.4%). However, in a sensitivity analysis that only allowed studies with joint-specific pain, the combined association was genome-wide significant (OR=1.23, 95%CI=1.14-1.32, P=3.4×10−8, I2=0%). Expression levels of Cct5 and Fam173b in mice with inflammatory pain were higher in the lumbar spinal cord, not in the lumbar dorsal root ganglions, compared to mice without pain. None of the 92 genetic variants previously described were significantly associated with pain (P>7.7×10−4).
Conclusions
We identified a common genetic variant on chromosome 5p15.2 associated with joint-specific CWP in humans. This work suggests that CCT5 and FAM173B are promising targets in the regulation of pain.
doi:10.1136/annrheumdis-2012-201742
PMCID: PMC3691951  PMID: 22956598
Gene Polymorphism; Fibromyalgia/Pain Syndromes; Epidemiology
4.  Identification of a Candidate Gene for Astigmatism 
Purpose.
Astigmatism is a common refractive error that reduces vision, where the curvature and refractive power of the cornea in one meridian are less than those of the perpendicular axis. It is a complex trait likely to be influenced by both genetic and environmental factors. Twin studies of astigmatism have found approximately 60% of phenotypic variance is explained by genetic factors. This study aimed to identify susceptibility loci for astigmatism.
Methods.
We performed a meta-analysis of seven genome-wide association studies that included 22,100 individuals of European descent, where astigmatism was defined as the number of diopters of cylinder prescription, using fixed effect inverse variance-weighted methods.
Results.
A susceptibility locus was identified with lead single nucleotide polymorphism rs3771395 on chromosome 2p13.3 (meta-analysis, P = 1.97 × 10−7) in the VAX2 gene. VAX2 plays an important role in the development of the dorsoventral axis of the eye. Animal studies have shown a gradient in astigmatism along the vertical plane, with corresponding changes in refraction, particularly in the ventral field.
Conclusions.
This finding advances the understanding of refractive error, and provides new potential pathways to be evaluated with regard to the development of astigmatism.
We identified a new susceptibility locus in the VAX2 gene, which is involved in the development of the ventral eye. This finding may allow new insights into astigmatism and advance the understanding of refractive error.
doi:10.1167/iovs.12-10463
PMCID: PMC3576051  PMID: 23322567
5.  Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction 
Circulation  2012;126(4):468-478.
Background
Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction.
Methods and Results
In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity.
Conclusions
Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease.
doi:10.1161/CIRCULATIONAHA.112.104380
PMCID: PMC3430727  PMID: 22705887
aging; cardiovascular disease; endothelial dysfunction; nitric oxide synthase; vasodilation
6.  Genetic influences on plasma CFH and CFHR1 concentrations and their role in susceptibility to age-related macular degeneration 
Human Molecular Genetics  2013;22(23):4857-4869.
It is a longstanding puzzle why non-coding variants in the complement factor H (CFH) gene are more strongly associated with age-related macular degeneration (AMD) than functional coding variants that directly influence the alternative complement pathway. The situation is complicated by tight genetic associations across the region, including the adjacent CFH-related genes CFHR3 and CFHR1, which may themselves influence the alternative complement pathway and are contained within a common deletion (CNP147) which is associated with protection against AMD. It is unclear whether this association is mediated through a protective effect of low plasma CFHR1 concentrations, high plasma CFH or both. We examined the triangular relationships of CFH/CFHR3/CFHR1 genotype, plasma CFH or CFHR1 concentrations and AMD susceptibility in combined case–control (1256 cases, 1020 controls) and cross-sectional population (n = 1004) studies and carried out genome-wide association studies of plasma CFH and CFHR1 concentrations. A non-coding CFH SNP (rs6677604) and the CNP147 deletion were strongly correlated both with each other and with plasma CFH and CFHR1 concentrations. The plasma CFH-raising rs6677604 allele and raised plasma CFH concentration were each associated with AMD protection. In contrast, the protective association of the CNP147 deletion with AMD was not mediated by low plasma CFHR1, since AMD-free controls showed increased plasma CFHR1 compared with cases, but it may be mediated by the association of CNP147 with raised plasma CFH concentration. The results are most consistent with a regulatory locus within a 32 kb region of the CFH gene, with a major effect on plasma CFH concentration and AMD susceptibility.
doi:10.1093/hmg/ddt336
PMCID: PMC3820139  PMID: 23873044
7.  Fragile X Mental Retardation Protein Regulates New Neuron Differentiation in the Adult Olfactory Bulb 
The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.
doi:10.1523/JNEUROSCI.5514-10.2011
PMCID: PMC3682409  PMID: 21307257
8.  Species-Dependent Post-Transcriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex 
Cell  2012;149(4):899-911.
SUMMARY
Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here we show that FMRP regulates the translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is ubiquitously expressed, NOS1 protein is transiently co-expressed with FMRP during early synaptogenesis in layer- and region-specific subpopulations of pyramidal neurons. These include mid-fetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Broca’s area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases but not FMRP-deficient mice. Thus, alterations in FMRP post-transcriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.
doi:10.1016/j.cell.2012.02.060
PMCID: PMC3351852  PMID: 22579290
9.  The Molecular Genetic Architecture of Self-Employment 
van der Loos, Matthijs J. H. M. | Rietveld, Cornelius A. | Eklund, Niina | Koellinger, Philipp D. | Rivadeneira, Fernando | Abecasis, Gonçalo R. | Ankra-Badu, Georgina A. | Baumeister, Sebastian E. | Benjamin, Daniel J. | Biffar, Reiner | Blankenberg, Stefan | Boomsma, Dorret I. | Cesarini, David | Cucca, Francesco | de Geus, Eco J. C. | Dedoussis, George | Deloukas, Panos | Dimitriou, Maria | Eiriksdottir, Guðny | Eriksson, Johan | Gieger, Christian | Gudnason, Vilmundur | Höhne, Birgit | Holle, Rolf | Hottenga, Jouke-Jan | Isaacs, Aaron | Järvelin, Marjo-Riitta | Johannesson, Magnus | Kaakinen, Marika | Kähönen, Mika | Kanoni, Stavroula | Laaksonen, Maarit A. | Lahti, Jari | Launer, Lenore J. | Lehtimäki, Terho | Loitfelder, Marisa | Magnusson, Patrik K. E. | Naitza, Silvia | Oostra, Ben A. | Perola, Markus | Petrovic, Katja | Quaye, Lydia | Raitakari, Olli | Ripatti, Samuli | Scheet, Paul | Schlessinger, David | Schmidt, Carsten O. | Schmidt, Helena | Schmidt, Reinhold | Senft, Andrea | Smith, Albert V. | Spector, Timothy D. | Surakka, Ida | Svento, Rauli | Terracciano, Antonio | Tikkanen, Emmi | van Duijn, Cornelia M. | Viikari, Jorma | Völzke, Henry | Wichmann, H. -Erich | Wild, Philipp S. | Willems, Sara M. | Willemsen, Gonneke | van Rooij, Frank J. A. | Groenen, Patrick J. F. | Uitterlinden, André G. | Hofman, Albert | Thurik, A. Roy | Cherny, Stacey
PLoS ONE  2013;8(4):e60542.
Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2 = 25%, h2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10−5 were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.
doi:10.1371/journal.pone.0060542
PMCID: PMC3617140  PMID: 23593239
10.  Longevity candidate genes and their association with personality traits in the elderly 
Human longevity and personality traits are both heritable and are consistently linked at the phenotypic level. We test the hypothesis that candidate genes influencing longevity in lower organisms are associated with variance in the five major dimensions of human personality (measured by the NEO-FFI and IPIP inventories) plus related mood states of anxiety and depression. Seventy single nucleotide polymorphisms (SNPs) in six brain expressed, longevity candidate genes (AFG3L2, FRAP1, MAT1A, MAT2A, SYNJ1 and SYNJ2) were typed in over one thousand 70-year old participants from the Lothian Birth Cohort of 1936 (LBC1936). No SNPs were associated with the personality and psychological distress traits at a Bonferroni corrected level of significance (p < 0.0002), but there was an over-representation of nominally significant (p < 0.05) SNPs in the synaptojanin-2 (SYNJ2) gene associated with agreeableness and symptoms of depression. Eight SNPs which showed nominally significant association across personality measurement instruments were tested in an extremely large replication sample of 17 106 participants. SNP rs350292, in SYNJ2, was significant: the minor allele was associated with an average decrease in NEO agreeableness scale scores of 0.25 points, and 0.67 points in the restricted analysis of elderly cohorts (most aged > 60 years). Because we selected a specific set of longevity genes based on functional genomics findings, further research on other longevity gene candidates is warranted to discover whether they are relevant candidates for personality and psychological distress traits.
doi:10.1002/ajmg.b.32013
PMCID: PMC3583011  PMID: 22213687
NEO personality; IPIP personality; anxiety; depressive symptoms; ageing; genetics
11.  Sequencing of high-complexity DNA pools for identification of nucleotide and structural variants in regions associated with complex traits 
We have used targeted genomic sequencing of high-complexity DNA pools based on long-range PCR and deep DNA sequencing by the SOLiD technology. The method was used for sequencing of 286 kb from four chromosomal regions with quantitative trait loci (QTL) influencing blood plasma lipid and uric acid levels in DNA pools of 500 individuals from each of five European populations. The method shows very good precision in estimating allele frequencies as compared with individual genotyping of SNPs (r2=0.95, P<10−16). Validation shows that the method is able to identify novel SNPs and estimate their frequency in high-complexity DNA pools. In our five populations, 17% of all SNPs and 61% of structural variants are not available in the public databases. A large fraction of the novel variants show a limited geographic distribution, with 62% of the novel SNPs and 59% of novel structural variants being detected in only one of the populations. The large number of population-specific novel SNPs underscores the need for comprehensive sequencing of local populations in order to identify the causal variants of human traits.
doi:10.1038/ejhg.2011.138
PMCID: PMC3234506  PMID: 21811304
pooling; next-generation DNA sequencing; SOLiD; SNP; indels
12.  Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish 
PLoS ONE  2012;7(11):e48911.
Recessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7) is expressed abundantly in the normal zebrafish brain. Next, we used two zFbxo7-specific morpholinos (targeting protein translation and mRNA splicing, respectively), to knock down the zFbxo7 expression. The injection of either of these zFbxo7-specific morpholinos in the fish embryos induced a marked decrease in the zFbxo7 protein expression, and a range of developmental defects. Furthermore, whole-mount in situ mRNA hybridization showed abnormal patterning and significant decrease in the number of diencephalic tyrosine hydroxylase-expressing neurons, corresponding to the human nigrostriatal or ventral tegmental dopaminergic neurons. Of note, the number of the dopamine transporter-expressing neurons was much more severely depleted, suggesting dopaminergic dysfunctions earlier and larger than those due to neuronal loss. Last, the zFbxo7 morphants displayed severe locomotor disturbances (bradykinesia), which were dramatically improved by the dopaminergic agonist apomorphine. The severity of these morphological and behavioral abnormalities correlated with the severity of zFbxo7 protein deficiency. Moreover, the effects of the co-injection of zFbxo7- and p53-specific morpholinos were similar to those obtained with zFbxo7-specific morpholinos alone, supporting further the contention that the observed phenotypes were specifically due to the knock down of zFbxo7. In conclusion, this novel vertebrate model reproduces pathologic and behavioral hallmarks of human parkinsonism (dopaminergic neuronal loss and dopamine-dependent bradykinesia), representing therefore a valid tool for investigating the mechanisms of selective dopaminergic neuronal death, and screening for modifier genes and therapeutic compounds.
doi:10.1371/journal.pone.0048911
PMCID: PMC3487786  PMID: 23133663
13.  Association of HSP70 and its co-chaperones with Alzheimer’s Disease 
The heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer’s disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected participants derived from the Rotterdam Study, a population-based study including 7983 persons aged 55 years and older. We genotyped a total of 12,053 Single Nucleotide Polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. Replication was performed in two independent cohort studies, the Framingham Heart study (FHS; N=806) and Cardiovascular Health Study (CHS; N=2150). When adjusting for multiple testing, we found a small but consistent, though not significant effect of rs12118313 located 32kb from PFDN2, with an OR of 1.19 (p-value from meta-analysis =0.003). However this SNP was in the intron of another gene, suggesting it is unlikely this SNP reflects the effect of PFDN2. In a formal pathway analysis we found nominally significant evidence for an association of BAG, DNAJA and prefoldin with AD. These findings corroborate with those of a study of 2032 AD patients and 5328 controls, in which several members of the prefoldin family showed evidence for association to AD. Our study did not reveal evidence for a genetic variant if the HSP70 family with a major effect on AD. However, our findings of the single SNP analysis and pathway analysis suggest that multiple genetic variants in prefoldin are associated with AD.
doi:10.3233/JAD-2011-101560
PMCID: PMC3483142  PMID: 21403392
Heat-Shock Proteins; Alzheimer Disease; prefoldin; Genetic Association Studies
14.  CGG repeat in the FMR1 gene: size matters 
Clinical genetics  2011;80(3):214-225.
The FMR1 gene contains a CGG-repeat present in the 5’UTR which can be unstable upon transmission to the next generation. The repeat is up to 55 CGGs long in the normal population. In patients with fragile X syndrome, a repeat length exceeding 200 CGGs (full mutation: FM) generally leads to methylation of the repeat and the promoter region, which is accompanied by silencing of the FMR1 gene. The absence of FMR1 protein, FMRP, seen in FM is the cause of the mental retardation in patients with fragile X syndrome. The premutation (PM) is defined as 55-200 CGGs. Female PM carriers are at risk of developing primary ovarian insufficiency. Elderly PM carriers might develop a progressive neurodegenerative disorder called fragile X-associated tremor/ataxia syndrome. Although arising from the mutations in the same gene, distinct mechanisms lead to fragile X syndrome (absence of FMRP), FXTAS (toxic RNA gain of function) and FXPOI. The pathogenic mechanisms thought to underlie these disorders are discussed. This review gives insight on the implications of all possible repeat length categories seen in fragile X families.
doi:10.1111/j.1399-0004.2011.01723.x
PMCID: PMC3151325  PMID: 21651511
CGG repeat; FMR1; FXPOI; FXTAS; mental retardation; treatment
15.  Genetic architecture of circulating lipid levels 
Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.
doi:10.1038/ejhg.2011.21
PMCID: PMC3137496  PMID: 21448234
serum lipids; polygenic; genome-wide association; polygenic score; pathway analysis
16.  Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases 
Perry, John R. B. | Voight, Benjamin F. | Yengo, Loïc | Amin, Najaf | Dupuis, Josée | Ganser, Martha | Grallert, Harald | Navarro, Pau | Li, Man | Qi, Lu | Steinthorsdottir, Valgerdur | Scott, Robert A. | Almgren, Peter | Arking, Dan E. | Aulchenko, Yurii | Balkau, Beverley | Benediktsson, Rafn | Bergman, Richard N. | Boerwinkle, Eric | Bonnycastle, Lori | Burtt, Noël P. | Campbell, Harry | Charpentier, Guillaume | Collins, Francis S. | Gieger, Christian | Green, Todd | Hadjadj, Samy | Hattersley, Andrew T. | Herder, Christian | Hofman, Albert | Johnson, Andrew D. | Kottgen, Anna | Kraft, Peter | Labrune, Yann | Langenberg, Claudia | Manning, Alisa K. | Mohlke, Karen L. | Morris, Andrew P. | Oostra, Ben | Pankow, James | Petersen, Ann-Kristin | Pramstaller, Peter P. | Prokopenko, Inga | Rathmann, Wolfgang | Rayner, William | Roden, Michael | Rudan, Igor | Rybin, Denis | Scott, Laura J. | Sigurdsson, Gunnar | Sladek, Rob | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Tuomilehto, Jaakko | Uitterlinden, Andre G. | Vivequin, Sidonie | Weedon, Michael N. | Wright, Alan F. | Hu, Frank B. | Illig, Thomas | Kao, Linda | Meigs, James B. | Wilson, James F. | Stefansson, Kari | van Duijn, Cornelia | Altschuler, David | Morris, Andrew D. | Boehnke, Michael | McCarthy, Mark I. | Froguel, Philippe | Palmer, Colin N. A. | Wareham, Nicholas J. | Groop, Leif | Frayling, Timothy M. | Cauchi, Stéphane | Gibson, Greg
PLoS Genetics  2012;8(5):e1002741.
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
Author Summary
Individuals with Type 2 diabetes (T2D) can present with variable clinical characteristics. It is well known that obesity is a major risk factor for type 2 diabetes, yet patients can vary considerably—there are many lean diabetes patients and many overweight people without diabetes. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). Specifically, as lean T2D patients had lower risk than obese patients, they must have been more genetically susceptible. Using genetic data from multiple genome-wide association studies, we tested genetic markers across the genome in 2,112 lean type 2 diabetes cases (BMI<25 kg/m2), 4,123 obese cases (BMI≥30 kg/m2), and 54,412 healthy controls. We confirmed our results in an additional 2,881 lean cases, 8,702 obese cases, and 18,957 healthy controls. Using these data we found differences in genetic enrichment between lean and obese cases, supporting our original hypothesis. We also searched for genetic variants that may be risk factors only in lean or obese patients and found two novel gene regions not previously reported in European individuals. These findings may influence future study design for type 2 diabetes and provide further insight into the biology of the disease.
doi:10.1371/journal.pgen.1002741
PMCID: PMC3364960  PMID: 22693455
17.  Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning 
Nature medicine  2011;17(5):559-565.
Deficiency in fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), an inherited form of intellectual disability. Despite extensive research, how FMRP deficiency contributes to the cognitive deficits in FXS is unclear. We have previously shown that Fmrp-null mice exhibit reduced adult hippocampal neurogenesis. Since Fmrp is also enriched in mature neurons, we explored the functional significance of Fmrp expression in neural stem and progenitor cells (aNSCs) and its role in adult neurogenesis. Here we show ablation of Fmrp in aNSCs via inducible gene recombination leads to reduced hippocampal neurogenesis in vitro and in vivo, as well as significantly impaired hippocampus-dependent learning in mice. Conversely, restoration of Fmrp expression specifically in aNSCs rescues these learning deficits. These data suggest that defective adult neurogenesis may contribute to the learning impairment seen in FXS, and these learning deficits can be rectified by delayed restoration of Fmrp specifically in aNSCs.
doi:10.1038/nm.2336
PMCID: PMC3140952  PMID: 21516088
18.  Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque 
Bis, Joshua C. | Kavousi, Maryam | Franceschini, Nora | Isaacs, Aaron | Abecasis, Gonçalo R | Schminke, Ulf | Post, Wendy | Smith, Albert V. | Cupples, L. Adrienne | Markus, Hugh S | Schmidt, Reinhold | Huffman, Jennifer E. | Lehtimäki, Terho | Baumert, Jens | Münzel, Thomas | Heckbert, Susan R. | Dehghan, Abbas | North, Kari | Oostra, Ben | Bevan, Steve | Stoegerer, Eva-Maria | Hayward, Caroline | Raitakari, Olli | Meisinger, Christa | Schillert, Arne | Sanna, Serena | Völzke, Henry | Cheng, Yu-Ching | Thorsson, Bolli | Fox, Caroline S. | Rice, Kenneth | Rivadeneira, Fernando | Nambi, Vijay | Halperin, Eran | Petrovic, Katja E. | Peltonen, Leena | Wichmann, H. Erich | Schnabel, Renate B. | Dörr, Marcus | Parsa, Afshin | Aspelund, Thor | Demissie, Serkalem | Kathiresan, Sekar | Reilly, Muredach P. | Uitterlinden, Andre | Couper, David J. | Sitzer, Matthias | Kähönen, Mika | Illig, Thomas | Wild, Philipp S. | Orru, Marco | Lüdemann, Jan | Shuldiner, Alan R. | Eiriksdottir, Gudny | White, Charles C. | Rotter, Jerome I. | Hofman, Albert | Seissler, Jochen | Zeller, Tanja | Usala, Gianluca | Ernst, Florian | Launer, Lenore J. | D'Agostino, Ralph B. | O'Leary, Daniel H. | Ballantyne, Christie | Thiery, Joachim | Ziegler, Andreas | Lakatta, Edward G. | Chilukoti, Ravi Kumar | Harris, Tamara B. | Wolf, Philip A. | Psaty, Bruce M. | Polak, Joseph F | Li, Xia | Rathmann, Wolfgang | Uda, Manuela | Boerwinkle, Eric | Klopp, Norman | Schmidt, Helena | Wilson, James F | Viikari, Jorma | Koenig, Wolfgang | Blankenberg, Stefan | Newman, Anne B. | Witteman, Jacqueline | Heiss, Gerardo | van Duijn, Cornelia | Scuteri, Angelo | Homuth, Georg | Mitchell, Braxton D. | Gudnason, Vilmundur | O’Donnell, Christopher J.
Nature Genetics  2011;43(10):940-947.
doi:10.1038/ng.920
PMCID: PMC3257519  PMID: 21909108
genome-wide association study; genetic epidemiology; genetics; subclinical atherosclerosis; carotid intima media thickness; cardiovascular disease; cohort study; meta-analysis; risk
19.  Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals 
Dastani, Zari | Hivert, Marie-France | Timpson, Nicholas | Perry, John R. B. | Yuan, Xin | Scott, Robert A. | Henneman, Peter | Heid, Iris M. | Kizer, Jorge R. | Lyytikäinen, Leo-Pekka | Fuchsberger, Christian | Tanaka, Toshiko | Morris, Andrew P. | Small, Kerrin | Isaacs, Aaron | Beekman, Marian | Coassin, Stefan | Lohman, Kurt | Qi, Lu | Kanoni, Stavroula | Pankow, James S. | Uh, Hae-Won | Wu, Ying | Bidulescu, Aurelian | Rasmussen-Torvik, Laura J. | Greenwood, Celia M. T. | Ladouceur, Martin | Grimsby, Jonna | Manning, Alisa K. | Liu, Ching-Ti | Kooner, Jaspal | Mooser, Vincent E. | Vollenweider, Peter | Kapur, Karen A. | Chambers, John | Wareham, Nicholas J. | Langenberg, Claudia | Frants, Rune | Willems-vanDijk, Ko | Oostra, Ben A. | Willems, Sara M. | Lamina, Claudia | Winkler, Thomas W. | Psaty, Bruce M. | Tracy, Russell P. | Brody, Jennifer | Chen, Ida | Viikari, Jorma | Kähönen, Mika | Pramstaller, Peter P. | Evans, David M. | St. Pourcain, Beate | Sattar, Naveed | Wood, Andrew R. | Bandinelli, Stefania | Carlson, Olga D. | Egan, Josephine M. | Böhringer, Stefan | van Heemst, Diana | Kedenko, Lyudmyla | Kristiansson, Kati | Nuotio, Marja-Liisa | Loo, Britt-Marie | Harris, Tamara | Garcia, Melissa | Kanaya, Alka | Haun, Margot | Klopp, Norman | Wichmann, H.-Erich | Deloukas, Panos | Katsareli, Efi | Couper, David J. | Duncan, Bruce B. | Kloppenburg, Margreet | Adair, Linda S. | Borja, Judith B. | Wilson, James G. | Musani, Solomon | Guo, Xiuqing | Johnson, Toby | Semple, Robert | Teslovich, Tanya M. | Allison, Matthew A. | Redline, Susan | Buxbaum, Sarah G. | Mohlke, Karen L. | Meulenbelt, Ingrid | Ballantyne, Christie M. | Dedoussis, George V. | Hu, Frank B. | Liu, Yongmei | Paulweber, Bernhard | Spector, Timothy D. | Slagboom, P. Eline | Ferrucci, Luigi | Jula, Antti | Perola, Markus | Raitakari, Olli | Florez, Jose C. | Salomaa, Veikko | Eriksson, Johan G. | Frayling, Timothy M. | Hicks, Andrew A. | Lehtimäki, Terho | Smith, George Davey | Siscovick, David S. | Kronenberg, Florian | van Duijn, Cornelia | Loos, Ruth J. F. | Waterworth, Dawn M. | Meigs, James B. | Dupuis, Josee | Richards, J. Brent | Visscher, Peter M.
PLoS Genetics  2012;8(3):e1002607.
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Author Summary
Serum adiponectin levels are highly heritable and are inversely correlated with the risk of type 2 diabetes (T2D), coronary artery disease, stroke, and several metabolic traits. To identify common genetic variants associated with adiponectin levels and risk of T2D and metabolic traits, we conducted a meta-analysis of genome-wide association studies of 45,891 multi-ethnic individuals. In addition to confirming that variants at the ADIPOQ and CDH13 loci influence adiponectin levels, our analyses revealed that 10 new loci also affecting circulating adiponectin levels. We demonstrated that expression levels of several genes in these candidate regions are associated with serum adiponectin levels. Using a powerful novel method to assess the contribution of the identified variants with other traits using summary-level results from large-scale GWAS consortia, we provide evidence that the risk alleles for adiponectin are associated with deleterious changes in T2D risk and metabolic syndrome traits (triglycerides, HDL, post-prandial glucose, insulin, and waist-to-hip ratio), demonstrating that the identified loci, taken together, impact upon metabolic disease.
doi:10.1371/journal.pgen.1002607
PMCID: PMC3315470  PMID: 22479202
20.  Heritability of dietary food intake patterns 
Acta Diabetologica  2012;50:721-726.
The quality and quantity of food intake affect body weight, but little is known about the genetics of such human dietary intake patterns in relation to the genetics of BMI. We aimed to estimate the heritability of dietary intake patterns and genetic correlation with BMI in participants of the Erasmus Rucphen Family study. The study included 1,690 individuals (42 % men; age range, 19–92), of whom 41.4 % were overweight and 15.9 % were obese. Self-report questionnaires were used to assess the number of days (0–7) on which participants consumed vegetables, fruit, fruit juice, fish, unhealthy snacks, fastfood, and soft drinks. Principal component analysis was applied to examine the correlations between the questionnaire items and to generate dietary intake pattern scores. Heritability and the shared genetic and shared non-genetic (environmental) correlations were estimated using the family structure of the cohort. Principal component analysis suggested that the questionnaire items could be grouped in a healthy and unhealthy dietary intake pattern, explaining 22 and 18 % of the phenotypic variance, respectively. The dietary intake patterns had a heritability of 0.32 for the healthy and 0.27 for the unhealthy pattern. Genetic correlations between the dietary intake patterns and BMI were not significant, but we found a significant environmental correlation between the unhealthy dietary intake pattern and BMI. Specific dietary intake patterns are associated with the risk of obesity and are heritable traits. The genetic factors that determine specific dietary intake patterns do not significantly overlap with the genetic factors that determine BMI.
Electronic supplementary material
The online version of this article (doi:10.1007/s00592-012-0387-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s00592-012-0387-0
PMCID: PMC3898132  PMID: 22415036
Heritability; BMI; Food intake
21.  Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile 
Kilpeläinen, Tuomas O | Zillikens, M Carola | Stančáková, Alena | Finucane, Francis M | Ried, Janina S | Langenberg, Claudia | Zhang, Weihua | Beckmann, Jacques S | Luan, Jian’an | Vandenput, Liesbeth | Styrkarsdottir, Unnur | Zhou, Yanhua | Smith, Albert Vernon | Zhao, Jing-Hua | Amin, Najaf | Vedantam, Sailaja | Shin, So Youn | Haritunians, Talin | Fu, Mao | Feitosa, Mary F | Kumari, Meena | Halldorsson, Bjarni V | Tikkanen, Emmi | Mangino, Massimo | Hayward, Caroline | Song, Ci | Arnold, Alice M | Aulchenko, Yurii S | Oostra, Ben A | Campbell, Harry | Cupples, L Adrienne | Davis, Kathryn E | Döring, Angela | Eiriksdottir, Gudny | Estrada, Karol | Fernández-Real, José Manuel | Garcia, Melissa | Gieger, Christian | Glazer, Nicole L | Guiducci, Candace | Hofman, Albert | Humphries, Steve E | Isomaa, Bo | Jacobs, Leonie C | Jula, Antti | Karasik, David | Karlsson, Magnus K | Khaw, Kay-Tee | Kim, Lauren J | Kivimäki, Mika | Klopp, Norman | Kühnel, Brigitte | Kuusisto, Johanna | Liu, Yongmei | Ljunggren, Östen | Lorentzon, Mattias | Luben, Robert N | McKnight, Barbara | Mellström, Dan | Mitchell, Braxton D | Mooser, Vincent | Moreno, José Maria | Männistö, Satu | O’Connell, Jeffery R | Pascoe, Laura | Peltonen, Leena | Peral, Belén | Perola, Markus | Psaty, Bruce M | Salomaa, Veikko | Savage, David B | Semple, Robert K | Skaric-Juric, Tatjana | Sigurdsson, Gunnar | Song, Kijoung S | Spector, Timothy D | Syvänen, Ann-Christine | Talmud, Philippa J | Thorleifsson, Gudmar | Thorsteinsdottir, Unnur | Uitterlinden, André G | van Duijn, Cornelia M | Vidal-Puig, Antonio | Wild, Sarah H | Wright, Alan F | Clegg, Deborah J | Schadt, Eric | Wilson, James F | Rudan, Igor | Ripatti, Samuli | Borecki, Ingrid B | Shuldiner, Alan R | Ingelsson, Erik | Jansson, John-Olov | Kaplan, Robert C | Gudnason, Vilmundur | Harris, Tamara B | Groop, Leif | Kiel, Douglas P | Rivadeneira, Fernando | Walker, Mark | Barroso, Inês | Vollenweider, Peter | Waeber, Gérard | Chambers, John C | Kooner, Jaspal S | Soranzo, Nicole | Hirschhorn, Joel N | Stefansson, Kari | Wichmann, H-Erich | Ohlsson, Claes | O’Rahilly, Stephen | Wareham, Nicholas J | Speliotes, Elizabeth K | Fox, Caroline S | Laakso, Markku | Loos, Ruth J F
Nature Genetics  2011;43(8):753-760.
Genome-wide association studies have identified 32 loci associated with body mass index (BMI), a measure that does not allow distinguishing lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ~2.5 million SNPs and body fat percentage from 36,626 individuals, and followed up the 14 most significant (P<10−6) independent loci in 39,576 individuals. We confirmed the previously established adiposity locus in FTO (P=3×10−26), and identified two new loci associated with body fat percentage, one near IRS1 (P=4×10−11) and one near SPRY2 (P=3×10−8). Both loci harbour genes with a potential link to adipocyte physiology, of which the locus near IRS1 shows an intriguing association pattern. The body-fat-decreasing allele associates with decreased IRS1 expression and with an impaired metabolic profile, including decreased subcutaneous-to-visceral fat ratio, increased insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease, and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
doi:10.1038/ng.866
PMCID: PMC3262230  PMID: 21706003
22.  Congenital Dyserythropoietic Anemia Type II: molecular analysis and expression of the SEC23B Gene 
Background
Congenital dyserythropoietic anemia type II (CDAII), the most common form of CDA, is an autosomal recessive condition. CDAII diagnosis is based on invasive, expensive, and time consuming tests that are available only in specialized laboratories. The recent identification of SEC23B mutations as the cause of CDAII opens new possibilities for the molecular diagnosis of the disease. The aim of this study was to characterize molecular genomic SEC23B defects in 16 unrelated patients affected by CDAII and correlate the identified genetic alterations with SEC23B transcript and protein levels in erythroid precursors.
Methods
SEC23B was sequenced in 16 patients, their relatives and 100 control participants. SEC23B transcript level were studied by quantitative PCR (qPCR) in peripheral erythroid precursors and lymphocytes from the patients and healthy control participants. Sec23B protein content was analyzed by immunoblotting in samples of erythroblast cells from CDAII patients and healthy controls.
Results
All of the investigated cases carried SEC23B mutations on both alleles, with the exception of two patients in which a single heterozygous mutation was found. We identified 15 different SEC23B mutations, of which four represent novel mutations: p.Gln214Stop, p.Thr485Ala, p.Val637Gly, and p.Ser727Phe. The CDAII patients exhibited a 40-60% decrease of SEC23B mRNA levels in erythroid precursors when compared with the corresponding cell type from healthy participants. The largest decrease was observed in compound heterozygote patients with missense/nonsense mutations. In three patients, Sec23B protein levels were evaluated in erythroid precursors and found to be strictly correlated with the reduction observed at the transcript level. We also demonstrate that Sec23B mRNA expression levels in lymphocytes and erythroblasts are similar.
Conclusions
In this study, we identified four novel SEC23B mutations associated with CDAII disease. We also demonstrate that the genetic alteration results in a significant decrease of SEC23B transcript in erythroid precursors. Similar down-regulation was observed in peripheral lymphocytes, suggesting that the use of these cells might be sufficient in the identification of Sec23B gene alterations. Finally, we demonstrate that decreased Sec23B protein levels in erythroid precursors correlate with down-regulation of the SEC23B mRNA transcript.
doi:10.1186/1750-1172-6-89
PMCID: PMC3269369  PMID: 22208203
Congenital dyserythropoietic anemia; CDA II; SEC23B; Red blood cell; Coat complex protein II
24.  Potential therapeutic interventions for fragile X syndrome 
Trends in molecular medicine  2010;16(11):516-527.
Fragile X syndrome (FXS) is caused by a lack of the fragile X mental retardation protein (FMRP); FMRP deficiency in neurons of patients with FXS causes intellectual disability (IQ<70) and several behavioural problems, including hyperactivity and autistic-like features. In the brain, no gross morphological malformations have been found, although subtle spine abnormalities have been reported. FXS has been linked to altered group I metabotropic glutamate receptor (mGluR)-dependent and independent forms of synaptic plasticity. Here, we discuss potential targeted therapeutic strategies developed to specifically correct disturbances in the excitatory mGluR and the inhibitory gamma-aminobutyric (GABA) receptor pathways that have been tested in animal models and/or in clinical trials with patients with FXS.
doi:10.1016/j.molmed.2010.08.005
PMCID: PMC2981507  PMID: 20864408
fragile X syndrome; therapy; metabotropic glutamate receptors (mGluRs); gamma-aminobutyric (GABA) receptor
25.  Meta-analysis of genome-wide association for migraine in six population-based European cohorts 
Migraine is a common neurological disorder with a genetically complex background. This paper describes a meta-analysis of genome-wide association (GWA) studies on migraine, performed by the Dutch–Icelandic migraine genetics (DICE) consortium, which brings together six population-based European migraine cohorts with a total sample size of 10 980 individuals (2446 cases and 8534 controls). A total of 32 SNPs showed marginal evidence for association at a P-value<10−5. The best result was obtained for SNP rs9908234, which had a P-value of 8.00 × 10−8. This top SNP is located in the nerve growth factor receptor (NGFR) gene. However, this SNP did not replicate in three cohorts from the Netherlands and Australia. Of the other 31 SNPs, 18 SNPs were tested in two replication cohorts, but none replicated. In addition, we explored previously identified candidate genes in the meta-analysis data set. This revealed a modest gene-based significant association between migraine and the metadherin (MTDH) gene, previously identified in the first clinic-based GWA study (GWAS) for migraine (Bonferroni-corrected gene-based P-value=0.026). This finding is consistent with the involvement of the glutamate pathway in migraine. Additional research is necessary to further confirm the involvement of glutamate.
doi:10.1038/ejhg.2011.48
PMCID: PMC3172930  PMID: 21448238
migraine; meta-analysis; genome-wide association; population-based

Results 1-25 (64)