PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (62)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Upstream Transcription Factor 1 (USF1) allelic variants regulate lipoprotein metabolism in women and USF1 expression in atherosclerotic plaque 
Scientific Reports  2014;4:4650.
Upstream transcription factor 1 (USF1) allelic variants significantly influence future risk of cardiovascular disease and overall mortality in females. We investigated sex-specific effects of USF1 gene allelic variants on serum indices of lipoprotein metabolism, early markers of asymptomatic atherosclerosis and their changes during six years of follow-up. In addition, we investigated the cis-regulatory role of these USF1 variants in artery wall tissues in Caucasians. In the Cardiovascular Risk in Young Finns Study, 1,608 participants (56% women, aged 31.9 ± 4.9) with lipids and cIMT data were included. For functional study, whole genome mRNA expression profiling was performed in 91 histologically classified atherosclerotic samples. In females, serum total, LDL cholesterol and apoB levels increased gradually according to USF1 rs2516839 genotypes TT < CT < CC and rs1556259 AA < AG < GG as well as according to USF1 H3 (GCCCGG) copy number 0 < 1 < 2. Furthermore, the carriers of minor alleles of rs2516839 (C) and rs1556259 (G) of USF1 gene had decreased USF1 expression in atherosclerotic plaques (P = 0.028 and 0.08, respectively) as compared to non-carriers. The genetic variation in USF1 influence USF1 transcript expression in advanced atherosclerosis and regulates levels and metabolism of circulating apoB and apoB-containing lipoprotein particles in sex-dependent manner, but is not a major determinant of early markers of atherosclerosis.
doi:10.1038/srep04650
PMCID: PMC3983598  PMID: 24722012
2.  Sympathetic activity–associated periodic repolarization dynamics predict mortality following myocardial infarction 
The Journal of Clinical Investigation  2014;124(4):1770-1780.
Background. Enhanced sympathetic activity at the ventricular myocardium can destabilize repolarization, increasing the risk of death. Sympathetic activity is known to cluster in low-frequency bursts; therefore, we hypothesized that sympathetic activity induces periodic low-frequency changes of repolarization. We developed a technique to assess the sympathetic effect on repolarization and identified periodic components in the low-frequency spectral range (≤0.1 Hz), which we termed periodic repolarization dynamics (PRD).
Methods. We investigated the physiological properties of PRD in multiple experimental studies, including a swine model of steady-state ventilation (n = 7) and human studies involving fixed atrial pacing (n = 10), passive head-up tilt testing (n = 11), low-intensity exercise testing (n = 11), and beta blockade (n = 10). We tested the prognostic power of PRD in 908 survivors of acute myocardial infarction (MI). Finally, we tested the predictive values of PRD and T-wave alternans (TWA) in 2,965 patients undergoing clinically indicated exercise testing.
Results. PRD was not related to underlying respiratory activity (P < 0.001) or heart-rate variability (P = 0.002). Furthermore, PRD was enhanced by activation of the sympathetic nervous system, and pharmacological blockade of sympathetic nervous system activity suppressed PRD (P ≤ 0.005 for both). Increased PRD was the strongest single risk predictor of 5-year total mortality (hazard ratio 4.75, 95% CI 2.94–7.66; P < 0.001) after acute MI. In patients undergoing exercise testing, the predictive value of PRD was strong and complementary to that of TWA.
Conclusion. We have described and identified low-frequency rhythmic modulations of repolarization that are associated with sympathetic activity. Increased PRD can be used as a predictor of mortality in survivors of acute MI and patients undergoing exercise testing.
Trial registration. ClinicalTrials.gov NCT00196274.
Funding. This study was funded by Angewandte Klinische Forschung, University of Tübingen (252-1-0).
doi:10.1172/JCI70085
PMCID: PMC3973112  PMID: 24642467
3.  Branched-Chain and Aromatic Amino Acids Are Predictors of Insulin Resistance in Young Adults 
Diabetes Care  2013;36(3):648-655.
OBJECTIVE
Branched-chain and aromatic amino acids are associated with the risk for future type 2 diabetes; however, the underlying mechanisms remain elusive. We tested whether amino acids predict insulin resistance index in healthy young adults.
RESEARCH DESIGN AND METHODS
Circulating isoleucine, leucine, valine, phenylalanine, tyrosine, and six additional amino acids were quantified in 1,680 individuals from the population-based Cardiovascular Risk in Young Finns Study (baseline age 32 ± 5 years; 54% women). Insulin resistance was estimated by homeostasis model assessment (HOMA) at baseline and 6-year follow-up. Amino acid associations with HOMA of insulin resistance (HOMA-IR) and glucose were assessed using regression models adjusted for established risk factors. We further examined whether amino acid profiling could augment risk assessment of insulin resistance (defined as 6-year HOMA-IR >90th percentile) in early adulthood.
RESULTS
Isoleucine, leucine, valine, phenylalanine, and tyrosine were associated with HOMA-IR at baseline and for men at 6-year follow-up, while for women only leucine, valine, and phenylalanine predicted 6-year HOMA-IR (P < 0.05). None of the other amino acids were prospectively associated with HOMA-IR. The sum of branched-chain and aromatic amino acid concentrations was associated with 6-year insulin resistance for men (odds ratio 2.09 [95% CI 1.38–3.17]; P = 0.0005); however, including the amino acid score in prediction models did not improve risk discrimination.
CONCLUSIONS
Branched-chain and aromatic amino acids are markers of the development of insulin resistance in young, normoglycemic adults, with most pronounced associations for men. These findings suggest that the association of branched-chain and aromatic amino acids with the risk for future diabetes is at least partly mediated through insulin resistance.
doi:10.2337/dc12-0895
PMCID: PMC3579331  PMID: 23129134
4.  CYP1A2 polymorphism −1545C > T (rs2470890) is associated with increased side effects to clozapine 
BMC Psychiatry  2014;14:50.
Background
Cytochrome P450 1A2 gene (CYP1A2) polymorphisms have been suggested to be associated with increased side effects to antipsychotics. However, studies on this are scarce and have been conducted with either various antipsychotics or only in small samples of patients receiving clozapine. The aim of the present study was to test for an association between the CYP1A2 −1545C > T (rs2470890) polymorphism and side effects in a larger sample of patients during long-term clozapine treatment.
Methods
A total of 237 patients receiving clozapine treatment completed the Liverpool University Neuroleptic Side-Effect Rating Scale (LUNSERS) assessing clozapine-induced side effects. Of these patients, 180 completed the questionnaire satisfactorily, agreed to provide a blood sample, and were successfully genotyped for the polymorphism.
Results
The TT genotype of CYP1A2 polymorphism −1545C > T (rs2470890) was associated with significantly more severe side effects during clozapine treatment (p = 0.011). In a subanalysis, all seven types of side effects (sympathicotonia–tension; depression–anxiety; sedation; orthostatic hypotension; dermal side effects; urinary side effects; and sexual side effects) appeared numerically (but insignificantly) more severely among TT carriers. In addition, use of mood stabilizers was more common among patients with the TT genotype (OR = 2.63, p = 0.004).
Conclusions
This study has identified an association between the CYP1A2 polymorphism −1545C > T (rs2470890) and the occurrence of more severe clozapine side effects. However, these results should be regarded as tentative and more studies of larger sample sizes will be required to confirm the result.
doi:10.1186/1471-244X-14-50
PMCID: PMC3937243  PMID: 24555493
1545C > T; rs2470890; Clozapine; Side effects; Antipsychotic
5.  Chromosome X-Wide Association Study Identifies Loci for Fasting Insulin and Height and Evidence for Incomplete Dosage Compensation 
PLoS Genetics  2014;10(2):e1004127.
The X chromosome (chrX) represents one potential source for the “missing heritability” for complex phenotypes, which thus far has remained underanalyzed in genome-wide association studies (GWAS). Here we demonstrate the benefits of including chrX in GWAS by assessing the contribution of 404,862 chrX SNPs to levels of twelve commonly studied cardiometabolic and anthropometric traits in 19,697 Finnish and Swedish individuals with replication data on 5,032 additional Finns. By using a linear mixed model, we estimate that on average 2.6% of the additive genetic variance in these twelve traits is attributable to chrX, this being in proportion to the number of SNPs in the chromosome. In a chrX-wide association analysis, we identify three novel loci: two for height (rs182838724 near FGF16/ATRX/MAGT1, joint P-value = 2.71×10−9, and rs1751138 near ITM2A, P-value = 3.03×10−10) and one for fasting insulin (rs139163435 in Xq23, P-value = 5.18×10−9). Further, we find that effect sizes for variants near ITM2A, a gene implicated in cartilage development, show evidence for a lack of dosage compensation. This observation is further supported by a sex-difference in ITM2A expression in whole blood (P-value = 0.00251), and is also in agreement with a previous report showing ITM2A escapes from X chromosome inactivation (XCI) in the majority of women. Hence, our results show one of the first links between phenotypic variation in a population sample and an XCI-escaping locus and pinpoint ITM2A as a potential contributor to the sexual dimorphism in height. In conclusion, our study provides a clear motivation for including chrX in large-scale genetic studies of complex diseases and traits.
Author Summary
The X chromosome (chrX) analyses have often been neglected in large-scale genome-wide association studies. Given that chrX contains a considerable proportion of DNA, we wanted to examine how the variation in the chromosome contributes to commonly studied phenotypes. To this end, we studied the associations of over 400,000 chrX variants with twelve complex phenotypes, such as height, in almost 25,000 Northern European individuals. Demonstrating the value of assessing chrX associations, we found that as a whole the variation in the chromosome influences the levels of many of these phenotypes and further identified three new genomic regions where the variants associate with height or fasting insulin levels. In one of these three associated regions, the region near ITM2A, we observed that there is a sex difference in the genetic effects on height in a manner consistent with a lack of dosage compensation in this locus. Further supporting this observation, ITM2A has been shown to be among those chrX genes where the X chromosome inactivation is incomplete. Identifying phenotype associations in regions like this where chrX allele dosages are not balanced between men and women can be particularly valuable in helping us to understand why some characteristics differ between sexes.
doi:10.1371/journal.pgen.1004127
PMCID: PMC3916240  PMID: 24516404
6.  High Risk Population Isolate Reveals Low Frequency Variants Predisposing to Intracranial Aneurysms 
PLoS Genetics  2014;10(1):e1004134.
3% of the population develops saccular intracranial aneurysms (sIAs), a complex trait, with a sporadic and a familial form. Subarachnoid hemorrhage from sIA (sIA-SAH) is a devastating form of stroke. Certain rare genetic variants are enriched in the Finns, a population isolate with a small founder population and bottleneck events. As the sIA-SAH incidence in Finland is >2× increased, such variants may associate with sIA in the Finnish population. We tested 9.4 million variants for association in 760 Finnish sIA patients (enriched for familial sIA), and in 2,513 matched controls with case-control status and with the number of sIAs. The most promising loci (p<5E-6) were replicated in 858 Finnish sIA patients and 4,048 controls. The frequencies and effect sizes of the replicated variants were compared to a continental European population using 717 Dutch cases and 3,004 controls. We discovered four new high-risk loci with low frequency lead variants. Three were associated with the case-control status: 2q23.3 (MAF 2.1%, OR 1.89, p 1.42×10-9); 5q31.3 (MAF 2.7%, OR 1.66, p 3.17×10-8); 6q24.2 (MAF 2.6%, OR 1.87, p 1.87×10-11) and one with the number of sIAs: 7p22.1 (MAF 3.3%, RR 1.59, p 6.08×-9). Two of the associations (5q31.3, 6q24.2) replicated in the Dutch sample. The 7p22.1 locus was strongly differentiated; the lead variant was more frequent in Finland (4.6%) than in the Netherlands (0.3%). Additionally, we replicated a previously inconclusive locus on 2q33.1 in all samples tested (OR 1.27, p 1.87×10-12). The five loci explain 2.1% of the sIA heritability in Finland, and may relate to, but not explain, the increased incidence of sIA-SAH in Finland. This study illustrates the utility of population isolates, familial enrichment, dense genotype imputation and alternate phenotyping in search for variants associated with complex diseases.
Author Summary
Genome-wide association studies (GWAS) have been extensively used to identify common genetic variants associated with complex diseases. As common genetic variants have explained only a small fraction of the heritability of most complex diseases, there is a growing interest in the role of how low frequency and rare variants contribute to the susceptibility. Low frequency variants are more often specific to populations of distinct ancestries. Saccular intracranial aneurysms (sIA) are balloon-like dilatations in the arteries on the surface of the brain. The rupture of sIA causes life-threatening intracranial bleeding. sIA is a complex disease, which is known to sometimes run in families. Here, we utilize the recent advancements in knowledge of genetic variation in different populations to examine the role of low-frequency variants in sIA disease in the isolated population of Finland where sIA related strokes are more common than in most other populations. By studying >8000 Finns we identify four low-frequency variants associated with the sIA disease. We also show that the association of two of the variants are seen in other European populations as well. Our findings demonstrate that multiple study designs are needed to uncover more comprehensively their genetic background, including population isolates.
doi:10.1371/journal.pgen.1004134
PMCID: PMC3907358  PMID: 24497844
7.  Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function 
Chasman, Daniel I. | Fuchsberger, Christian | Pattaro, Cristian | Teumer, Alexander | Böger, Carsten A. | Endlich, Karlhans | Olden, Matthias | Chen, Ming-Huei | Tin, Adrienne | Taliun, Daniel | Li, Man | Gao, Xiaoyi | Gorski, Mathias | Yang, Qiong | Hundertmark, Claudia | Foster, Meredith C. | O'Seaghdha, Conall M. | Glazer, Nicole | Isaacs, Aaron | Liu, Ching-Ti | Smith, Albert V. | O'Connell, Jeffrey R. | Struchalin, Maksim | Tanaka, Toshiko | Li, Guo | Johnson, Andrew D. | Gierman, Hinco J. | Feitosa, Mary F. | Hwang, Shih-Jen | Atkinson, Elizabeth J. | Lohman, Kurt | Cornelis, Marilyn C. | Johansson, Åsa | Tönjes, Anke | Dehghan, Abbas | Lambert, Jean-Charles | Holliday, Elizabeth G. | Sorice, Rossella | Kutalik, Zoltan | Lehtimäki, Terho | Esko, Tõnu | Deshmukh, Harshal | Ulivi, Sheila | Chu, Audrey Y. | Murgia, Federico | Trompet, Stella | Imboden, Medea | Coassin, Stefan | Pistis, Giorgio | Harris, Tamara B. | Launer, Lenore J. | Aspelund, Thor | Eiriksdottir, Gudny | Mitchell, Braxton D. | Boerwinkle, Eric | Schmidt, Helena | Cavalieri, Margherita | Rao, Madhumathi | Hu, Frank | Demirkan, Ayse | Oostra, Ben A. | de Andrade, Mariza | Turner, Stephen T. | Ding, Jingzhong | Andrews, Jeanette S. | Freedman, Barry I. | Giulianini, Franco | Koenig, Wolfgang | Illig, Thomas | Meisinger, Christa | Gieger, Christian | Zgaga, Lina | Zemunik, Tatijana | Boban, Mladen | Minelli, Cosetta | Wheeler, Heather E. | Igl, Wilmar | Zaboli, Ghazal | Wild, Sarah H. | Wright, Alan F. | Campbell, Harry | Ellinghaus, David | Nöthlings, Ute | Jacobs, Gunnar | Biffar, Reiner | Ernst, Florian | Homuth, Georg | Kroemer, Heyo K. | Nauck, Matthias | Stracke, Sylvia | Völker, Uwe | Völzke, Henry | Kovacs, Peter | Stumvoll, Michael | Mägi, Reedik | Hofman, Albert | Uitterlinden, Andre G. | Rivadeneira, Fernando | Aulchenko, Yurii S. | Polasek, Ozren | Hastie, Nick | Vitart, Veronique | Helmer, Catherine | Wang, Jie Jin | Stengel, Bénédicte | Ruggiero, Daniela | Bergmann, Sven | Kähönen, Mika | Viikari, Jorma | Nikopensius, Tiit | Province, Michael | Ketkar, Shamika | Colhoun, Helen | Doney, Alex | Robino, Antonietta | Krämer, Bernhard K. | Portas, Laura | Ford, Ian | Buckley, Brendan M. | Adam, Martin | Thun, Gian-Andri | Paulweber, Bernhard | Haun, Margot | Sala, Cinzia | Mitchell, Paul | Ciullo, Marina | Kim, Stuart K. | Vollenweider, Peter | Raitakari, Olli | Metspalu, Andres | Palmer, Colin | Gasparini, Paolo | Pirastu, Mario | Jukema, J. Wouter | Probst-Hensch, Nicole M. | Kronenberg, Florian | Toniolo, Daniela | Gudnason, Vilmundur | Shuldiner, Alan R. | Coresh, Josef | Schmidt, Reinhold | Ferrucci, Luigi | Siscovick, David S. | van Duijn, Cornelia M. | Borecki, Ingrid B. | Kardia, Sharon L.R. | Liu, Yongmei | Curhan, Gary C. | Rudan, Igor | Gyllensten, Ulf | Wilson, James F. | Franke, Andre | Pramstaller, Peter P. | Rettig, Rainer | Prokopenko, Inga | Witteman, Jacqueline | Hayward, Caroline | Ridker, Paul M | Parsa, Afshin | Bochud, Murielle | Heid, Iris M. | Kao, W.H. Linda | Fox, Caroline S. | Köttgen, Anna
Human Molecular Genetics  2012;21(24):5329-5343.
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4–2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
doi:10.1093/hmg/dds369
PMCID: PMC3607468  PMID: 22962313
8.  Association of resting heart rate with cardiovascular function: a cross-sectional study in 522 Finnish subjects 
Background
High resting heart rate (HR) is associated with increased cardiovascular risk in general populations, possibly due to elevated blood pressure (BP) or sympathetic over-activity. We studied the association of resting HR with cardiovascular function, and examined whether the hemodynamics remained similar during passive head-up tilt.
Methods
Hemodynamics were recorded using whole-body impedance cardiography and continuous radial pulse wave analysis in 522 subjects (age 20–72 years, 261 males) without medication influencing HR or BP, or diagnosed diabetes, coronary artery, renal, peripheral arterial, or cerebrovascular disease. Correlations were calculated, and results analysed according to resting HR tertiles.
Results
Higher resting HR was associated with elevated systolic and diastolic BP, lower stroke volume but higher cardiac output and work, and lower systemic vascular resistance, both supine and upright (p < 0.05 for all). Subjects with higher HR also showed lower supine and upright aortic pulse pressure and augmentation index, and increased resting pulse wave velocity (p < 0.001). Upright stroke volume decreased less in subjects with highest resting HR (p < 0.05), and cardiac output decreased less in subjects with lowest resting HR (p < 0.009), but clear hemodynamic differences between the tertiles persisted both supine and upright.
Conclusions
Supine and upright hemodynamic profile associated with higher resting HR is characterized by higher cardiac output and lower systemic vascular resistance. Higher resting HR was associated with reduced central wave reflection, in spite of elevated BP and arterial stiffness. The increased cardiac workload, higher BP and arterial stiffness, may explain why higher HR is associated with less favourable prognosis in populations.
Trial registration
ClinicalTrials.gov, NCT01742702
doi:10.1186/1471-2261-13-102
PMCID: PMC3832902  PMID: 24237764
Arterial stiffness; Cardiac output; Heart rate; Head-up tilt; Systemic vascular resistance
9.  Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding 
Personality traits are basic dimensions of behavioural variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly-growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide SNP data from >8,000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially-desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance.
doi:10.1111/j.1558-5646.2012.01679.x
PMCID: PMC3518920  PMID: 23025612
balancing selection; mutation-selection balance; antagonistic pleiotropy; correlational selection; neutral; trade-offs; personality; temperament; mutation; evolution; behavioural syndromes
10.  A Meta-Analysis of Genome-Wide Association Studies of the Electrocardiographic Early Repolarization Pattern 
Background
The early repolarization pattern (ERP) is common and associated with risk of sudden cardiac death. ERP is heritable and mutations have been described in syndromatic cases.
Objective
To conduct a meta-analysis of genome-wide association studies (GWAS) to identify common genetic variants influencing ERP.
Methods
We ascertained ERP based on electrocardiograms in three large community-based cohorts from Europe and the US: the Framingham Heart Study, the Health 2000 Study, and the KORA F4 Study. We analyzed GWAS in participants with and without ERP by logistic regression assuming an additive genetic model and meta-analyzed individual cohort results. We then sought to strengthen support for findings that reached p≤1×10−5 in independent individuals by direct genotyping or in-silico analysis of genome-wide data. We meta-analyzed the results from both stages.
Results
Of 7482 individuals in the discovery stage, 452 showed ERP (ERP positive: mean age 46.9±8.9 years, 30.3% women; ERP negative: 47.5±9.4 years, 54.2% women). After meta-analysis, eight single nucleotide polymorphisms reached p≤1×10−5: The most significant finding was intergenic rs11653989 (odds ratio 0.47; 95% confidence interval 0.36–0.61; p=6.9×10−9). The most biologically relevant finding was intronic to KCND3: rs17029069 (odds ratio 1.46; 95% confidence interval 1.25–1.69; p=8.5×10−7). In the replication step (7151 individuals), none of the eight variants replicated, and combined meta-analysis results failed to reach genome-wide significance.
Conclusions
In a GWAS, we were not able to reliably identify genetic variants predisposing to ERP, presumably due to insufficient statistical power and phenotype heterogeneity. The reported heritability of ERP warrants continued investigation in larger well-phenotyped populations.
doi:10.1016/j.hrthm.2012.06.008
PMCID: PMC3459269  PMID: 22683750
Early repolarization; Sudden cardiac death; Arrhythmia; GWAS; Meta-analysis; Electrocardiogram
11.  Inflammation, Adiposity, and Mortality in the Oldest Old 
Rejuvenation Research  2012;15(5):445-452.
Abstract
Background
Increased proinflammatory status is associated with both increased adiposity and higher mortality risk. Thus, it is paradoxical that mild obesity does not predict increased mortality in older adults. We investigated the association of inflammatory markers with body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR) in nonagenarians, and the combined effects of BMI, WC, WHR, and inflammatory status on mortality.
Methods
This study was based on a prospective population-based study, Vitality 90+, carried out in Tampere, Finland. Altogether, 157 women and 53 men aged 90 years were subjected to anthropometric measurements, blood samples, and a 4-year mortality follow-up. Inflammatory status was based on sex-specific median levels of interleukin-1 receptor antagonist (IL-1RA), interleukin-6 (IL-6), C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α).
Results
In the unadjusted linear regression analyses, IL-1RA, CRP, and TNF-α were positively associated with BMI and WC in women, whereas in men IL-1RA was positively associated with BMI and IL-6 positively with WC. In the models adjusted for diseases, functional status, and smoking, IL-1RA and CRP were positively associated with BMI and WC in women. Low WC and WHR combined with low inflammation protected from mortality in women and high BMI and WC regardless of inflammation protected from mortality in men in the adjusted Cox regression analysis.
Conclusions
In the oldest old, the effect of adiposity in combination with inflammatory status on mortality differs between men and women. More research is needed to disentangle the role of adiposity among the oldest old.
doi:10.1089/rej.2011.1310
PMCID: PMC3482839  PMID: 22998329
12.  Genome-wide association analysis identifies susceptibility loci for migraine without aura 
Nature genetics  2012;44(7):777-782.
Migraine without aura is the most common form of migraine, characterized by recurrent disabling headache and associated autonomic symptoms. To identify common genetic variants for this migraine type, we analyzed genome-wide association data of 2,326 clinic-based German and Dutch patients and 4,580 population-matched controls. We selected SNPs from 12 loci with two or more SNPs with P-values < 1 × 10−5 for follow-up in 2,508 patients and 2,652 controls. Two loci, i.e. 1q22 (MEF2D) and 3p24 (near TGFBR2) replicated convincingly (P = 4.9 × 10−4, P = 1.0 × 10−4, respectively). Meta-analysis of the discovery and replication data yielded two additional genome-wide significant (P < 5 × 10−8) loci in PHACTR1 and ASTN2. In addition, SNPs in two previously reported migraine loci in or near TRPM8 and LRP1 significantly replicated. This study reveals the first susceptibility loci for migraine without aura, thereby expanding our knowledge of this debilitating neurological disorder.
doi:10.1038/ng.2307
PMCID: PMC3773912  PMID: 22683712
13.  Childhood Nutrition in Predicting Metabolic Syndrome in Adults 
Diabetes Care  2012;35(9):1937-1943.
OBJECTIVE
Our aim was to study the associations of childhood lifestyle factors (the frequency of consumption of vegetables, fruit, fish, and meat, butter use on bread, and physical activity) with the metabolic syndrome (MetS) in adulthood.
RESEARCH DESIGN AND METHODS
The study cohort consisted of 2,128 individuals, 3–18 years of age at the baseline, with a follow-up time of 27 years. We used the average of lifestyle factor measurements taken in 1980, 1983, and 1986 in the analyses. Childhood dietary factors and physical activity were assessed by self-reported questionnaires, and a harmonized definition of MetS was used as the adult outcome.
RESULTS
Childhood vegetable consumption frequency was inversely associated with adult MetS (odds ratio [OR] 0.86 [95% CI 0.77–0.97], P = 0.02) in a multivariable analysis adjusted with age, sex, childhood metabolic risk factors (lipids, systolic blood pressure, insulin, BMI, and C-reactive protein), family history of type 2 diabetes and hypertension, and socioeconomic status. The association remained even after adjustment for adulthood vegetable consumption. Associations with the other childhood lifestyle factors were not found. Of the individual components of MetS, decreased frequency of childhood vegetable consumption predicted high blood pressure (0.88 [0.80–0.98], P = 0.01) and a high triglyceride value (0.88 [0.79–0.99], P = 0.03) after adjustment for the above-mentioned risk factors.
CONCLUSIONS
Childhood vegetable consumption frequency is inversely associated with MetS in adulthood. Our findings suggest that a higher intake of vegetables in childhood may have a protective effect on MetS in adulthood.
doi:10.2337/dc12-0019
PMCID: PMC3425009  PMID: 22815293
14.  Genome-wide meta-analyses of multi-ethnic cohorts identify multiple new susceptibility loci for refractive error and myopia 
Verhoeven, Virginie J.M. | Hysi, Pirro G. | Wojciechowski, Robert | Fan, Qiao | Guggenheim, Jeremy A. | Höhn, René | MacGregor, Stuart | Hewitt, Alex W. | Nag, Abhishek | Cheng, Ching-Yu | Yonova-Doing, Ekaterina | Zhou, Xin | Ikram, M. Kamran | Buitendijk, Gabriëlle H.S. | McMahon, George | Kemp, John P. | St. Pourcain, Beate | Simpson, Claire L. | Mäkelä, Kari-Matti | Lehtimäki, Terho | Kähönen, Mika | Paterson, Andrew D. | Hosseini, S. Mohsen | Wong, Hoi Suen | Xu, Liang | Jonas, Jost B. | Pärssinen, Olavi | Wedenoja, Juho | Yip, Shea Ping | Ho, Daniel W. H. | Pang, Chi Pui | Chen, Li Jia | Burdon, Kathryn P. | Craig, Jamie E. | Klein, Barbara E. K. | Klein, Ronald | Haller, Toomas | Metspalu, Andres | Khor, Chiea-Chuen | Tai, E-Shyong | Aung, Tin | Vithana, Eranga | Tay, Wan-Ting | Barathi, Veluchamy A. | Chen, Peng | Li, Ruoying | Liao, Jiemin | Zheng, Yingfeng | Ong, Rick T. | Döring, Angela | Evans, David M. | Timpson, Nicholas J. | Verkerk, Annemieke J.M.H. | Meitinger, Thomas | Raitakari, Olli | Hawthorne, Felicia | Spector, Tim D. | Karssen, Lennart C. | Pirastu, Mario | Murgia, Federico | Ang, Wei | Mishra, Aniket | Montgomery, Grant W. | Pennell, Craig E. | Cumberland, Phillippa M. | Cotlarciuc, Ioana | Mitchell, Paul | Wang, Jie Jin | Schache, Maria | Janmahasathian, Sarayut | Igo, Robert P. | Lass, Jonathan H. | Chew, Emily | Iyengar, Sudha K. | Gorgels, Theo G.M.F. | Rudan, Igor | Hayward, Caroline | Wright, Alan F. | Polasek, Ozren | Vatavuk, Zoran | Wilson, James F. | Fleck, Brian | Zeller, Tanja | Mirshahi, Alireza | Müller, Christian | Uitterlinden, Andre’ G. | Rivadeneira, Fernando | Vingerling, Johannes R. | Hofman, Albert | Oostra, Ben A. | Amin, Najaf | Bergen, Arthur A.B. | Teo, Yik-Ying | Rahi, Jugnoo S. | Vitart, Veronique | Williams, Cathy | Baird, Paul N. | Wong, Tien-Yin | Oexle, Konrad | Pfeiffer, Norbert | Mackey, David A. | Young, Terri L. | van Duijn, Cornelia M. | Saw, Seang-Mei | Wilson, Joan E. Bailey | Stambolian, Dwight | Klaver, Caroline C. | Hammond, Christopher J.
Nature genetics  2013;45(3):314-318.
Refractive error is the most common eye disorder worldwide, and a prominent cause of blindness. Myopia affects over 30% of Western populations, and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses including 37,382 individuals from 27 studies of European ancestry, and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in subjects of European ancestry, of which 8 were shared with Asians. Combined analysis revealed 8 additional loci. The new loci include genes with functions in neurotransmission (GRIA4), ion channels (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2, BMP2), and eye development (SIX6, PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for subjects with the highest genetic load. Our results, accumulated across independent multi-ethnic studies, considerably advance understanding of mechanisms involved in refractive error and myopia.
doi:10.1038/ng.2554
PMCID: PMC3740568  PMID: 23396134
15.  Circulating Metabolite Predictors of Glycemia in Middle-Aged Men and Women 
Diabetes Care  2012;35(8):1749-1756.
OBJECTIVE
Metabolite predictors of deteriorating glucose tolerance may elucidate the pathogenesis of type 2 diabetes. We investigated associations of circulating metabolites from high-throughput profiling with fasting and postload glycemia cross-sectionally and prospectively on the population level.
RESEARCH DESIGN AND METHODS
Oral glucose tolerance was assessed in two Finnish, population-based studies consisting of 1,873 individuals (mean age 52 years, 58% women) and reexamined after 6.5 years for 618 individuals in one of the cohorts. Metabolites were quantified by nuclear magnetic resonance spectroscopy from fasting serum samples. Associations were studied by linear regression models adjusted for established risk factors.
RESULTS
Nineteen circulating metabolites, including amino acids, gluconeogenic substrates, and fatty acid measures, were cross-sectionally associated with fasting and/or postload glucose (P < 0.001). Among these metabolic intermediates, branched-chain amino acids, phenylalanine, and α1-acid glycoprotein were predictors of both fasting and 2-h glucose at 6.5-year follow-up (P < 0.05), whereas alanine, lactate, pyruvate, and tyrosine were uniquely associated with 6.5-year postload glucose (P = 0.003–0.04). None of the fatty acid measures were prospectively associated with glycemia. Changes in fatty acid concentrations were associated with changes in fasting and postload glycemia during follow-up; however, changes in branched-chain amino acids did not follow glucose dynamics, and gluconeogenic substrates only paralleled changes in fasting glucose.
CONCLUSIONS
Alterations in branched-chain and aromatic amino acid metabolism precede hyperglycemia in the general population. Further, alanine, lactate, and pyruvate were predictive of postchallenge glucose exclusively. These gluconeogenic precursors are potential markers of long-term impaired insulin sensitivity that may relate to attenuated glucose tolerance later in life.
doi:10.2337/dc11-1838
PMCID: PMC3402262  PMID: 22563043
16.  New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism 
Horikoshi, Momoko | Yaghootkar, Hanieh | Mook-Kanamori, Dennis O. | Sovio, Ulla | Taal, H. Rob | Hennig, Branwen J. | Bradfield, Jonathan P. | St. Pourcain, Beate | Evans, David M. | Charoen, Pimphen | Kaakinen, Marika | Cousminer, Diana L. | Lehtimäki, Terho | Kreiner-Møller, Eskil | Warrington, Nicole M. | Bustamante, Mariona | Feenstra, Bjarke | Berry, Diane J. | Thiering, Elisabeth | Pfab, Thiemo | Barton, Sheila J. | Shields, Beverley M. | Kerkhof, Marjan | van Leeuwen, Elisabeth M. | Fulford, Anthony J. | Kutalik, Zoltán | Zhao, Jing Hua | den Hoed, Marcel | Mahajan, Anubha | Lindi, Virpi | Goh, Liang-Kee | Hottenga, Jouke-Jan | Wu, Ying | Raitakari, Olli T. | Harder, Marie N. | Meirhaeghe, Aline | Ntalla, Ioanna | Salem, Rany M. | Jameson, Karen A. | Zhou, Kaixin | Monies, Dorota M. | Lagou, Vasiliki | Kirin, Mirna | Heikkinen, Jani | Adair, Linda S. | Alkuraya, Fowzan S. | Al-Odaib, Ali | Amouyel, Philippe | Andersson, Ehm Astrid | Bennett, Amanda J. | Blakemore, Alexandra I.F. | Buxton, Jessica L. | Dallongeville, Jean | Das, Shikta | de Geus, Eco J. C. | Estivill, Xavier | Flexeder, Claudia | Froguel, Philippe | Geller, Frank | Godfrey, Keith M. | Gottrand, Frédéric | Groves, Christopher J. | Hansen, Torben | Hirschhorn, Joel N. | Hofman, Albert | Hollegaard, Mads V. | Hougaard, David M. | Hyppönen, Elina | Inskip, Hazel M. | Isaacs, Aaron | Jørgensen, Torben | Kanaka-Gantenbein, Christina | Kemp, John P. | Kiess, Wieland | Kilpeläinen, Tuomas O. | Klopp, Norman | Knight, Bridget A. | Kuzawa, Christopher W. | McMahon, George | Newnham, John P. | Niinikoski, Harri | Oostra, Ben A. | Pedersen, Louise | Postma, Dirkje S. | Ring, Susan M. | Rivadeneira, Fernando | Robertson, Neil R. | Sebert, Sylvain | Simell, Olli | Slowinski, Torsten | Tiesler, Carla M.T. | Tönjes, Anke | Vaag, Allan | Viikari, Jorma S. | Vink, Jacqueline M. | Vissing, Nadja Hawwa | Wareham, Nicholas J. | Willemsen, Gonneke | Witte, Daniel R. | Zhang, Haitao | Zhao, Jianhua | Wilson, James F. | Stumvoll, Michael | Prentice, Andrew M. | Meyer, Brian F. | Pearson, Ewan R. | Boreham, Colin A.G. | Cooper, Cyrus | Gillman, Matthew W. | Dedoussis, George V. | Moreno, Luis A | Pedersen, Oluf | Saarinen, Maiju | Mohlke, Karen L. | Boomsma, Dorret I. | Saw, Seang-Mei | Lakka, Timo A. | Körner, Antje | Loos, Ruth J.F. | Ong, Ken K. | Vollenweider, Peter | van Duijn, Cornelia M. | Koppelman, Gerard H. | Hattersley, Andrew T. | Holloway, John W. | Hocher, Berthold | Heinrich, Joachim | Power, Chris | Melbye, Mads | Guxens, Mònica | Pennell, Craig E. | Bønnelykke, Klaus | Bisgaard, Hans | Eriksson, Johan G. | Widén, Elisabeth | Hakonarson, Hakon | Uitterlinden, André G. | Pouta, Anneli | Lawlor, Debbie A. | Smith, George Davey | Frayling, Timothy M. | McCarthy, Mark I. | Grant, Struan F.A. | Jaddoe, Vincent W.V. | Jarvelin, Marjo-Riitta | Timpson, Nicholas J. | Prokopenko, Inga | Freathy, Rachel M.
Nature genetics  2012;45(1):76-82.
Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood1. Previous genome-wide association studies identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes, and a second variant, near CCNL1, with no obvious link to adult traits2. In an expanded genome-wide association meta-analysis and follow-up study (up to 69,308 individuals of European descent from 43 studies), we have now extended the number of genome-wide significant loci to seven, accounting for a similar proportion of variance to maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes; ADRB1 with adult blood pressure; and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.
doi:10.1038/ng.2477
PMCID: PMC3605762  PMID: 23202124
17.  Scrutiny of the CHRNA5-CHRNA3-CHRNB4 smoking behavior locus reveals a novel association with alcohol use in a Finnish population based study 
The CHRNA5-CHRNA3-CHRNB4 gene cluster on chromosome 15q25.1 encoding the cholinergic nicotinic receptor subunits is robustly associated with smoking behavior and nicotine dependence. Only a few studies to date have examined the locus with alcohol related traits and found evidence of association with alcohol abuse and dependence. Our main goal was to examine the role of three intensively studied single nucleotide polymorphisms, rs16969968, rs578776 and rs588765, tagging three distinct loci, in alcohol use. Our sample was drawn from two independent Finnish population-based surveys, the National FINRISK Study and the Health 2000 (Health Examination) Survey. The combined sample included a total of 32,592 adult Finns (54% women) of whom 8,356 were assessed for cigarettes per day (CPD). Data on alcohol use were available for 31,812 individuals. We detected a novel association between rs588765 and alcohol use defined as abstainers and low-frequency drinkers versus drinkers (OR=1.15, p=0.00007). Additionally, we provide precise estimates of strength of the association between the three loci and smoking quantity in a very large population based sample. As a conclusion, our results provide further evidence for the nicotine-specific role of rs16969968 (locus 1). Further, our data suggest that the effect of rs588765 (locus 3) may be specific to alcohol use as the effect is seen also in never smokers.
PMCID: PMC3709115  PMID: 23875064
Nicotinic acetylcholine receptors; 15q25.1; alcohol use; smoking behavior; public health; population-based sample; genetic association
18.  Metabolic Signatures of Insulin Resistance in 7,098 Young Adults 
Diabetes  2012;61(6):1372-1380.
Metabolite associations with insulin resistance were studied in 7,098 young Finns (age 31 ± 3 years; 52% women) to elucidate underlying metabolic pathways. Insulin resistance was assessed by the homeostasis model (HOMA-IR) and circulating metabolites quantified by high-throughput nuclear magnetic resonance spectroscopy in two population-based cohorts. Associations were analyzed using regression models adjusted for age, waist, and standard lipids. Branched-chain and aromatic amino acids, gluconeogenesis intermediates, ketone bodies, and fatty acid composition and saturation were associated with HOMA-IR (P < 0.0005 for 20 metabolite measures). Leu, Ile, Val, and Tyr displayed sex- and obesity-dependent interactions, with associations being significant for women only if they were abdominally obese. Origins of fasting metabolite levels were studied with dietary and physical activity data. Here, protein energy intake was associated with Val, Phe, Tyr, and Gln but not insulin resistance index. We further tested if 12 genetic variants regulating the metabolites also contributed to insulin resistance. The genetic determinants of metabolite levels were not associated with HOMA-IR, with the exception of a variant in GCKR associated with 12 metabolites, including amino acids (P < 0.0005). Nonetheless, metabolic signatures extending beyond obesity and lipid abnormalities reflected the degree of insulin resistance evidenced in young, normoglycemic adults with sex-specific fingerprints.
doi:10.2337/db11-1355
PMCID: PMC3357275  PMID: 22511205
19.  Delta-6-desaturase gene polymorphism is associated with lipoprotein oxidation in vitro 
Background
Oxidative modification of low-density lipoprotein (LDL) is a key event in the oxidation hypothesis of atherogenesis. We have previously shown that HDL does not protect LDL from oxidation in vitro, but is in fact oxidized fastest of all lipoproteins due to its rich polyunsaturated fatty acid (PUFA) composition, which is oxidation promoting. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA status. There is a deletion [T/-] in the promoter region of the Δ6 –desaturase gene (FADS2, rs 3834458), which has a direct inhibitory influence on production of PUFA from linoleic and alpha-linolenic acid. To investigate the possible role of rs 3834458 in lipoprotein modification, oxidation of LDL with HDL2 or HDL3 were analyzed from plasma of 58 free-living individuals.
Results
Total eicosapentaenoic acid and arachidonic acid were significantly decreased in plasma from the 10 subjects homozygous for the deletion in FADS2 rs 3834458. When the isolated LDL and HDL2 were subjected to Cu2+-induced oxidation, these subjects showed decreased rate of appearance (p = 0.027) and the final concentration of conjugated dienes (p = 0.033) compared to the other genotypes. For oxidation of LDL with HDL3, the final concentration of conjugated dienes was also significantly decreased in subjects with [−/−] compared with [T/T] and [T/-] (p = 0.034).
Conclusion
We conclude that FADS2 genotype may play a role in peroxidation susceptibility of lipoproteins.
doi:10.1186/1476-511X-12-80
PMCID: PMC3680190  PMID: 23721366
20.  TPH1 A218C polymorphism and temperament in major depression 
BMC Psychiatry  2013;13:118.
Background
In major depression, one of the candidate genes possibly affecting the risk and severity of symptoms has been found to be tryptophan hydroxylase (TPH1). Variation in treatment response to antidepressive agents according to TPH1 genotype has also been found in several studies. However, the relationship between temperament and TPH1 genotype in major depression is poorly understood, as only one study has been published so far. There are no earlier studies on the interaction between temperament traits, antidepressive medication response and TPH1 genotype. This interaction was studied in 97 subjects with major depression treated for six weeks with selective serotonine reuptake inhibitors.
Methods
Temperament dimensions Harm Avoidance (HA), Novelty Seeking (NS), Reward Dependence (RD) and Persistence (P) scores at baseline (1) and endpoint (2) were rated with the Temperament and Character Inventory (TCI) and compared between TPH1 A218C genotypes. Multivariate analysis of co-variance (MANCOVA) was used to analyze the interaction between the TPH1 genotype, treatment response and the different temperament dimensions at baseline and endpoint. In the analysis model, treatment response was used as a covariate and TPH1 genotype as a factor. A post hoc analysis for an interaction between remission status and TPH1 A218C genotype at endpoint HA level was also performed.
Results
The number of TPH1 A-alleles was associated with increasing levels in NS1 and NS2 scores and decreasing levels in HA1 and HA2 scores between TPH1 A218C genotypes. In the MANCOVA model, TPH1 genotype and treatment response had an interactive effect on both HA1 and HA2 scores, and to a lesser degree on NS2 scores. Additionally, an interaction between remission status and TPH1 A218C genotype was found to be associated with endpoint HA score, with a more marked effect of the interaction between CC genotype and remission status compared to A-allele carriers.
Conclusions
Our results suggest that in acute depression TPH1 A218C polymorphism and specifically the CC genotype together with the information on remission or treatment response differentiates between different temperament profiles and their changes.
doi:10.1186/1471-244X-13-118
PMCID: PMC3704284  PMID: 23597148
Depressive disorder; Temperament; TCI; Antidepressive agents; Treatment response; TPH1
21.  The Molecular Genetic Architecture of Self-Employment 
van der Loos, Matthijs J. H. M. | Rietveld, Cornelius A. | Eklund, Niina | Koellinger, Philipp D. | Rivadeneira, Fernando | Abecasis, Gonçalo R. | Ankra-Badu, Georgina A. | Baumeister, Sebastian E. | Benjamin, Daniel J. | Biffar, Reiner | Blankenberg, Stefan | Boomsma, Dorret I. | Cesarini, David | Cucca, Francesco | de Geus, Eco J. C. | Dedoussis, George | Deloukas, Panos | Dimitriou, Maria | Eiriksdottir, Guðny | Eriksson, Johan | Gieger, Christian | Gudnason, Vilmundur | Höhne, Birgit | Holle, Rolf | Hottenga, Jouke-Jan | Isaacs, Aaron | Järvelin, Marjo-Riitta | Johannesson, Magnus | Kaakinen, Marika | Kähönen, Mika | Kanoni, Stavroula | Laaksonen, Maarit A. | Lahti, Jari | Launer, Lenore J. | Lehtimäki, Terho | Loitfelder, Marisa | Magnusson, Patrik K. E. | Naitza, Silvia | Oostra, Ben A. | Perola, Markus | Petrovic, Katja | Quaye, Lydia | Raitakari, Olli | Ripatti, Samuli | Scheet, Paul | Schlessinger, David | Schmidt, Carsten O. | Schmidt, Helena | Schmidt, Reinhold | Senft, Andrea | Smith, Albert V. | Spector, Timothy D. | Surakka, Ida | Svento, Rauli | Terracciano, Antonio | Tikkanen, Emmi | van Duijn, Cornelia M. | Viikari, Jorma | Völzke, Henry | Wichmann, H. -Erich | Wild, Philipp S. | Willems, Sara M. | Willemsen, Gonneke | van Rooij, Frank J. A. | Groenen, Patrick J. F. | Uitterlinden, André G. | Hofman, Albert | Thurik, A. Roy | Cherny, Stacey
PLoS ONE  2013;8(4):e60542.
Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2 = 25%, h2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10−5 were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.
doi:10.1371/journal.pone.0060542
PMCID: PMC3617140  PMID: 23593239
22.  Genetic Loci Associated with Alzheimer’s Disease and Cerebrospinal Fluid Biomarkers in a Finnish Case-Control Cohort 
PLoS ONE  2013;8(4):e59676.
Objectives
To understand the relation between risk genes for Alzheimer’s disease (AD) and their influence on biomarkers for AD, we examined the association of AD in the Finnish cohort with single nucleotide polymorphisms (SNPs) from top AlzGene loci, genome-wide association studies (GWAS), and candidate gene studies; and tested the correlation between these SNPs and AD markers Aβ1–42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF).
Methods
We tested 25 SNPs for genetic association with clinical AD in our cohort comprised of 890 AD patients and 701-age matched healthy controls using logistic regression. For the correlational study with biomarkers, we tested 36 SNPs in a subset of 222 AD patients with available CSF using mixed models. Statistical analyses were adjusted for age, gender and APOE status. False discovery rate for multiple testing was applied. All participants were from academic hospital and research institutions in Finland.
Results
APOE-ε4, CLU rs11136000, and MS4A4A rs2304933 correlated with significantly decreased Aβ1–42 (corrected p<0.05). At an uncorrected p<0.05, PPP3R1 rs1868402 and MAPT rs2435211 were related with increased t-tau; while SORL1 rs73595277 and MAPT rs16940758, with increased p-tau. Only TOMM40 rs2075650 showed association with clinical AD after adjusting for APOE-ε4 (p = 0.007), but not after multiple test correction (p>0.05).
Conclusions
We provide evidence that APOE-ε4, CLU and MS4A4A, which have been identified in GWAS to be associated with AD, also significantly reduced CSF Aβ1–42 in AD. None of the other AlzGene and GWAS loci showed significant effects on CSF tau. The effects of other SNPs on CSF biomarkers and clinical AD diagnosis did not reach statistical significance. Our findings suggest that APOE-ε4, CLU and MS4A4A influence both AD risk and CSF Aβ1–42.
doi:10.1371/journal.pone.0059676
PMCID: PMC3616106  PMID: 23573206
23.  Genome-wide association study identifies multiple loci influencing human serum metabolite levels 
Nature genetics  2012;44(3):269-276.
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder. Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher heritability than comparable conventional metabolic phenotypes. In accordance with our expectations, SNPs at the 31 loci associated with individual metabolites account for a greater proportion of the genetic component of trait variance (up to 40%) than is typically observed for conventional serum metabolic phenotypes. The identification of such associations may provide substantial insight into cardiometabolic disorders.
doi:10.1038/ng.1073
PMCID: PMC3605033  PMID: 22286219
24.  Genetic Determinants of Trabecular and Cortical Volumetric Bone Mineral Densities and Bone Microstructure 
PLoS Genetics  2013;9(2):e1003247.
Most previous genetic epidemiology studies within the field of osteoporosis have focused on the genetics of the complex trait areal bone mineral density (aBMD), not being able to differentiate genetic determinants of cortical volumetric BMD (vBMD), trabecular vBMD, and bone microstructural traits. The objective of this study was to separately identify genetic determinants of these bone traits as analysed by peripheral quantitative computed tomography (pQCT). Separate GWA meta-analyses for cortical and trabecular vBMDs were performed. The cortical vBMD GWA meta-analysis (n = 5,878) followed by replication (n = 1,052) identified genetic variants in four separate loci reaching genome-wide significance (RANKL, rs1021188, p = 3.6×10−14; LOC285735, rs271170, p = 2.7×10−12; OPG, rs7839059, p = 1.2×10−10; and ESR1/C6orf97, rs6909279, p = 1.1×10−9). The trabecular vBMD GWA meta-analysis (n = 2,500) followed by replication (n = 1,022) identified one locus reaching genome-wide significance (FMN2/GREM2, rs9287237, p = 1.9×10−9). High-resolution pQCT analyses, giving information about bone microstructure, were available in a subset of the GOOD cohort (n = 729). rs1021188 was significantly associated with cortical porosity while rs9287237 was significantly associated with trabecular bone fraction. The genetic variant in the FMN2/GREM2 locus was associated with fracture risk in the MrOS Sweden cohort (HR per extra T allele 0.75, 95% confidence interval 0.60–0.93) and GREM2 expression in human osteoblasts. In conclusion, five genetic loci associated with trabecular or cortical vBMD were identified. Two of these (FMN2/GREM2 and LOC285735) are novel bone-related loci, while the other three have previously been reported to be associated with aBMD. The genetic variants associated with cortical and trabecular bone parameters differed, underscoring the complexity of the genetics of bone parameters. We propose that a genetic variant in the RANKL locus influences cortical vBMD, at least partly, via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences GREM2 expression in osteoblasts and thereby trabecular number and thickness as well as fracture risk.
Author Summary
Osteoporosis is a common highly heritable skeletal disease characterized by reduced bone mineral density (BMD) and deteriorated bone microstructure, resulting in an increased risk of fracture. Most previous genetic epidemiology studies have focused on the genetics of the complex trait BMD, not being able to separate genetic determinants of the trabecular and cortical bone compartments and bone microstructure. The trabecular and cortical BMDs can be analysed separately by computed tomography. Therefore, we performed separate genome-wide association studies for trabecular and cortical BMDs, demonstrating that the genetic determinants of cortical and trabecular BMDs differ. Genetic variants in the RANKL, LOC285735, OPG, and ESR1 loci were associated with cortical BMD, while a genetic variant in the FMN2/GREM2 locus was associated with trabecular BMD. Two of these are novel bone-related loci. Follow-up analyses of bone microstructure demonstrated that a genetic variant in the RANKL locus is associated with cortical porosity and that the FMN2/GREM2 locus is associated with trabecular number and thickness. We propose that a genetic variant in the RANKL locus influences cortical BMD via effects on cortical porosity, and that a genetic variant in the FMN2/GREM2 locus influences trabecular BMD and fracture risk via effects on both trabecular number and thickness.
doi:10.1371/journal.pgen.1003247
PMCID: PMC3578773  PMID: 23437003

Results 1-25 (62)