Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis 
Resistance to apoptosis is a major problem in ovarian cancer (OC) and correlates with poor prognosis. Osteoprotegerin (OPG) is a soluble secreted factor that acts as a decoy receptor for receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). OPG has been reported to attenuate TRAIL-induced apoptosis in a variety of cancer cells, including OC cells. OPG-mediated protection against TRAIL has been attributed to its decoy receptor function. However, OPG activates integrin/focal adhesion kinase (FAK) signaling in endothelial cells. In OC cells, activation of integrin/FAK signaling inhibits TRAIL-induced apoptosis. Based on these observations, we hypothesized that OPG could attenuate TRAIL-induced apoptosis in OC cells through integrin/FAK signaling.
In vitro experiments including immunoblots, colony formation assays, and apoptosis measurements were used to assess the effect of OPG on TRAIL-induced apoptosis.
Exogenous OPG protected from TRAIL-induced apoptosis in a TRAIL binding-independent manner and OPG protection was αvβ3 and αvβ5 integrin/FAK signaling-dependent. Moreover, OPG-mediated activation of integrin/FAK signaling resulted in the activation of Akt. Inhibition of both integrin/FAK and Akt signaling significantly inhibited OPG-mediated attenuation of TRAIL-induced apoptosis. Although OPG also stimulated ERK1/2 phosphorylation, inhibition of ERK1/2 signaling did not significantly altered OPG protection.
Our studies provide evidence, for the first time, that OPG can attenuate TRAIL-induced apoptosis in a TRAIL binding-independent manner through the activation of integrin/FAK/Akt signaling in OC cells.
PMCID: PMC3874685  PMID: 24267510
Osteoprotegerin (OPG); TRAIL; Ovarian carcinoma; Resistance; Akt; Integrin; FAK
2.  Ovarian cancer ascites increase Mcl-1 expression in tumor cells through ERK1/2-Elk-1 signaling to attenuate TRAIL-induced apoptosis 
Molecular Cancer  2012;11:84.
Ascites may affect the progression of ovarian cancer (OC). In particular, soluble factors present in OC ascites can create a protective environment for tumor cells that promote de novo resistance to drug- and death receptor-induced apoptosis. However, the underlying molecular mechanisms responsible for ascites-induced drug resistance are not well characterized.
Using human OC cell lines and tissues microarrays of human OC biopsies, we assessed the mechanism by which OC ascites increase Mcl-1 expression using Western blots, chemical inhibitors of ERK and small-inhibitory RNA treatments.
In the present study, we found that both Mcl-1 mRNA and protein levels were upregulated within 2 h upon treatment of OC cells with ascites obtained from women with advanced OC. In contrast, the expression of other Bcl-2 family antiapoptotic members such as Bcl-2 and Bcl-XL was not affected by ascites. An increase of Mcl-1 expression was consistently observed across different ascites from women with advanced serous OC. The knockdown of Mcl-1 significantly blocked ascites-induced Mcl-1 upregulation and ascites-mediated inhibition of TRAIL-induced apoptosis. Ascites induced a rapid phosphorylation of ERK1/2 and Elk-1 transcription factor. Furthermore, we found that ERK1/2 inhibition or Elk-1 knockdown was sufficient to block ascites-induced Mcl-1 expression. In high grade serous OC, we found a positive correlation between phosphorylated ERK1/2 and Mcl-1 expression.
These results indicate that ascites-induced ERK1/2/Elk-1 signaling is critical for Mcl-1 expression and for the ascites-mediated attenuation of TRAIL-induced apoptosis. The ERK1/2/Elk-1/Mcl-1 pathway represents a novel mechanism by which ascites induce de novo TRAIL resistance in OC cells.
PMCID: PMC3526430  PMID: 23158473
Ovarian cancer; Resistance; Mcl-1; ERK1/2; TRAIL; Elk-1
3.  Osteoprotegerin (OPG) protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis 
Resistance to apoptosis is a major problem in ovarian cancer and correlates with poor prognosis. Osteoprotegerin (OPG) is a secreted factor in malignant ascites and acts as a decoy receptor for receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL promotes apoptosis in ovarian cancer cells. Ovarian cancer ascites attenuate TRAIL-induced apoptosis raising the possibility that OPG contained in ascites may abrogate the anti-tumor activity of TRAIL.
Determination of OPG levels in ascites was measured by ELISA. Effect of OPG on TRAIL-induced cell death was determined by XTT and colony forming assays in ovarian cancer cell lines and primary tumor cells. Apoptosis was assessed by ELISA.
We found that recombinant OPG and malignant ascites attenuates TRAIL-induced cell death and apoptosis in a dose-dependent manner in ovarian cancer cell lines and primary ovarian tumor cells. OPG is present at high levels in the ascites of patients with ovarian cancer. We found a positive correlation between the levels of OPG in ascites and the ability of the ascites to attenuate TRAIL-induced cell death. The anti-apoptotic effect of ascites was not reversed by co-incubation with an OPG blocking antibody.
OPG and malignant ascites protect ovarian cancer cells from TRAIL-induced apoptosis. Although malignant ascites contain high levels of OPG, OPG is not a critical component that contributes to ascites-mediated attenuation of TRAIL-induced apoptosis.
PMCID: PMC3507713  PMID: 23153223
Osteoprotegerin; TRAIL; Ovarian carcinoma; Resistance; Ascites; Apoptosis
4.  Profiling of cytokines in human epithelial ovarian cancer ascites 
The behavior of tumor cells is influenced by the composition of the surrounding tumor environment. The importance of ascites in ovarian cancer (OC) progression is being increasingly recognized. The characterization of soluble factors in ascites is essential to understand how this environment affects OC progression. The development of cytokine arrays now allows simultaneous measurement of multiple cytokines per ascites using a single array.
We applied a multiplex cytokine array technology that simultaneously measures the level of 120 cytokines in ascites from 10 OC patients. The ascites concentration of a subset (n = 5) of cytokines that was elevated based on the multiplex array was validated by commercially available ELISA. The ascites level of these 5 cytokines was further evaluated by ELISA in a cohort of 38 patients. Kaplan-Meier analysis was used to assess the association of cytokine expression with progression-free survival (PFS) in this cohort.
We observed a wide variability of expression between different cytokines and levels of specific cytokines also varied in the 10 malignant ascites tested. Fifty-three (44%) cytokines were not detected in any of the 10 ascites. The level of several factors including, among others, angiogenin, angiopoietin-2, GRO, ICAM-1, IL-6, IL-6R, IL-8, IL-10, leptin, MCP-1, MIF NAP-2, osteprotegerin (OPG), RANTES, TIMP-2 and UPAR were elevated in most malignant ascites. Higher levels of OPG, IL-10 and leptin in OC ascites were associated with shorter PFS. IL-10 was shown to promote the anti-apoptotic activity of malignant ascites whereas OPG did not.
Our data demonstrated that there is a complex network of cytokine expression in OC ascites. Characterization of cytokine profiles in malignant ascites may provide information from which to prioritize key functional cytokines and understand the mechanism by which they alter tumor cells behavior. A better understanding of the cytokine network is essential to determine the role of ascites in OC progression.
PMCID: PMC3433103  PMID: 22957308
Ascites; ovarian cancer; tumor environment; cytokines; mulitplex array; IL-10
5.  Targeted ovarian cancer treatment: the TRAILs of resistance 
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Although most patients respond to the initial therapy when presenting with advanced disease, only 10-15% maintain a complete response following first-line therapy. Recurrence defines incurable disease in most cases. Despite improvements with conventional chemotherapy combinations, the overall cure rate remained mostly stable over the years. Increased long-term survival in OC patients will only be achieved through a comprehensive understanding of the basic mechanisms of tumor cell resistance. Such knowledge will translate into the development of new targeted strategies. In addition, because OC is considered to be a heterogeneous group of diseases with distinct gene expression profiles, it is likely that different approaches to treatment for distinct sub-types will be required to optimize response. One of the new promising anti-cancer therapies is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL has the ability to selectively induce apoptosis in tumor cells with little toxicity to normal cells. Death receptor ligands such as TRAIL rely on the activation of the apoptotic signaling pathway to destroy tumor cells. TRAIL induces the formation of a pro-apoptotic death-inducing signaling complex (DISC) via its death receptors, TRAIL receptor 1 (TRAIL R1) and TRAIL receptor 2 (TRAIL R2). The formation of the DISC activates caspase-8 which requires further signal amplification through the mitochondrial pathway for an efficient activation of effector caspases in OC cells. The initial enthusiasm for TRAIL has been hampered by accumulating data demonstrating TRAIL resistance in various tumor types including OC cells. There is, therefore, a need to identify markers of TRAIL resistance, which could represent new hits for targeted therapy that will enhance TRAIL efficacy. In addition, the identification of patients that are more likely to respond to TRAIL therapy would be highly desirable. In this review, we discuss the different molecular and cellular mechanisms leading to TRAIL resistance in OC. In particular, we address the mechanisms involved in intrinsic, acquired and environment-mediated TRAIL resistance, and their potential implication in the clinical outcome.
PMCID: PMC3236573  PMID: 22206047
Ovarian cancer; death receptors; resistance; TRAIL
6.  Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients 
BMC Cancer  2011;11:210.
The acellular fraction of epithelial ovarian cancer (EOC) ascites promotes de novo resistance of tumor cells and thus supports the idea that tumor cells may survive in the surrounding protective microenvironment contributing to disease recurrence. Levels of the pro-inflammatory cytokines IL-6 and IL-8 are elevated in EOC ascites suggesting that they could play a role in tumor progression.
We measured IL-6 and IL-8 levels in the ascites of 39 patients with newly diagnosed EOC. Commercially available enzyme-linked immunosorbent assay (ELISA) was used to determine IL-6 and IL-8 ascites levels. Ascites cytokine levels were correlated with clinicopathological parameters and progression-free survival.
Mean ascites levels for IL-6 and IL-8 were 6419 pg/ml (SEM: 1409 pg/ml) and 1408 pg/ml (SEM: 437 pg/ml) respectively. The levels of IL-6 and IL-8 in ascites were significantly lower in patients that have received prior chemotherapy before the surgery (Mann-Whitney U test, P = 0.037 for IL-6 and P = 0.008 for IL-8). Univariate analysis revealed that high IL-6 ascites levels (P = 0.021), serum CA125 levels (P = 0.04) and stage IV (P = 0.009) were significantly correlated with shorter progression-free survival. Including these variables in a multivariate analysis revealed that elevated IL-6 levels (P = 0.033) was an independent predictor of shorter progression-free survival.
Elevated IL-6, but not IL-8, ascites level is an independent predictor of shorter progression-free survival.
PMCID: PMC3118896  PMID: 21619709
7.  Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes 
Molecular Cancer  2010;9:118.
MUC16 is a cell surface mucin expressed at high levels by epithelial ovarian tumors. Following proteolytic cleavage, cell surface MUC16 (csMUC16) is shed in the extracellular milieu and is detected in the serum of cancer patients as the tumor marker CA125. csMUC16 acts as an adhesion molecule and facilitates peritoneal metastasis of ovarian tumors. Both sMUC16 and csMUC16 also protect cancer cells from cytotoxic responses of natural killer (NK) cells. In a previous study we demonstrated that sMUC16 binds to specific subset of NK cells. Here, we identify the csMUC16/sMUC16 binding partner expressed on immune cells.
Analysis of immune cells from the peripheral blood and peritoneal fluid of ovarian cancer patients indicates that in addition to NK cells, sMUC16 also binds to B cells and monocytes isolated from the peripheral blood and peritoneal fluid. I-type lectin, Siglec-9, is identified as the sMUC16 receptor on these immune cells. Siglec-9 is expressed on approximately 30-40% of CD16pos/CD56dim NK cells, 20-30% of B cells and >95% of monocytes. sMUC16 binds to the majority of the Siglec-9pos NK cells, B cells and monocytes. sMUC16 is released from the immune cells following neuraminidase treatment. Siglec-9 transfected Jurkat cells and monocytes isolated from healthy donors bind to ovarian tumor cells via Siglec-9-csMUC16 interaction.
Recent studies indicate that csMUC16 can act as an anti-adhesive agent that blocks tumor-immune cell interactions. Our results demonstrate that similar to other mucins, csMUC16 can also facilitate cell adhesion by interacting with a suitable binding partner such as mesothelin or Siglec-9. Siglec-9 is an inhibitory receptor that attenuates T cell and NK cell function. sMUC16/csMUC16-Siglec-9 binding likely mediates inhibition of anti-tumor immune responses.
PMCID: PMC2890604  PMID: 20497550
8.  MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells 
Molecular Cancer  2010;9:11.
Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition.
Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL), which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors.
MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in metastasizing within the peritoneal cavity and also at overcoming anti-tumor innate immune responses.
PMCID: PMC2818693  PMID: 20089172
9.  The prosurvival activity of ascites against TRAIL is associated with a shorter disease-free interval in patients with ovarian cancer 
The production of ascites is a common complication of ovarian cancer. Ascites constitute a unique tumor microenvironment that may affect disease progression. In this context, we recently showed that ovarian cancer ascites may protect tumor cells from TRAIL-induced apoptosis. In this study, we sought to determine whether the prosurvival effect of ascites affects disease-free intervals.
Peritoneal fluids were obtained from 54 women undergoing intra-abdominal surgery for suspected ovarian cancer (44 cancers and 10 benign diseases). The ability of peritoneal fluids to protect from TRAIL was assessed in the ovarian cancer cell line CaOV3, and IC50 were determined. The anti-apoptotic activity of 6 ascites against cisplatin, paclitaxel, doxorubicin, etoposide and vinorelbine was also assessed in CaOV3 cells, and the prosurvival activity of two ascites was assessed in 9 primary ovarian cancer cultures.
Among the 54 peritoneal fluids tested, inhibition of TRAIL cytotoxicity was variable. Fluids originating from ovarian cancer were generally more protective than fluids from non-malignant diseases. Most of the 44 ovarian cancer ascites increased TRAIL IC50 and this inhibitory effect did not correlate strongly with the protein concentration in these ascites or the levels of serum CA125, a tumor antigen which is used in the clinic as a marker of tumor burden. The effect of ascites on cisplatin- and paclitaxel-induced cell death was assessed with 4 ascites having inhibitory effect on TRAIL-induced cell death and 2 that do not. The four ascites with prosurvival activity against TRAIL had some inhibitory on cisplatin and/or paclitaxel. Two ovarian cancer ascites, OVC346 and OVC509, also inhibited TRAIL cytotoxicity in 9 primary cultures of ovarian tumor and induced Akt activation in three of these primary cultures. Among a cohort of 35 patients with ascites, a threshold of TRAIL IC50 with ascites/IC50 without ascites > 2 was associated with shorter disease-free interval.
The prosurvival activity of ascites against TRAIL is associated with shorter disease-free interval, which may be explained, at least in part, by ascites-induced cisplatin/paclitaxel resistance. Our findings suggest that ascites may contain prosurvival factors that protect against TRAIL and chemotherapy and consequently affect disease progression.
PMCID: PMC2821314  PMID: 20157422
10.  Characterization of the tumor marker muc16 (ca125) expressed by murine ovarian tumor cell lines and identification of a panel of cross-reactive monoclonal antibodies 
The ovarian tumor marker CA125 is expressed on human MUC16, a cell surface bound mucin that is also shed by proteolytic cleavage. Human MUC16 is overexpressed by ovarian cancer cells. MUC16 facilitates the binding of ovarian tumor cells to mesothelial cells lining the peritoneal cavity. Additionally, MUC16 also is a potent inhibitor of natural killer cell mediated anti-tumor cytotoxic responses. Extensive studies using human as well as murine ovarian tumor cell models are required to clearly define the function of MUC16 in the progression of ovarian tumors. The major objective of this study was to determine if the murine ovarian tumor cells, MOVCAR, express Muc16 and to characterize antibodies that recognize this mucin.
RT-PCR analysis was used for detecting the Muc16 message and size exclusion column chromatography for isolating Muc16 produced by MOVCAR cells. Soluble and cell-associated murine Muc16 were analyzed, respectively, by Western blotting and flow cytometry assays using a new panel of antibodies. The presence of N-linked oligosaccharides on murine Muc16 was determined by ConA chromatography.
We demonstrate that murine Muc16 is expressed by mouse ovarian cancer cells as an ~250 kDa glycoprotein that carries both O-linked and N-linked oligosaccharides. In contrast to human MUC16, the murine ortholog is primarily released from the cells and cannot be detected on the cell surface. Since the released murine Muc16 is not detected by conventional anti-CA125 assays, we have for the first time identified a panel of anti-human MUC16 antibodies that also recognizes the murine counterpart.
The antibodies identified in this study can be used in future purification of murine Muc16 and exhaustive study of its properties. Furthermore, the initial identification and characterization of murine Muc16 is a vital preliminary step in the development of effective murine models of human ovarian cancer. These models will aid in the further elucidation of the role that human MUC16 plays in the etiology and progression of ovarian tumors.
PMCID: PMC2708168  PMID: 19538730
11.  Immunohistochemical profiling of benign, low malignant potential and low grade serous epithelial ovarian tumors 
BMC Cancer  2008;8:346.
Serous epithelial ovarian tumors can be subdivided into benign (BOV), low malignant potential (LMP) or borderline and invasive (TOV) tumors. Although the molecular characteristics of serous BOV, LMP and low grade (LG) TOV tumors has been initiated, definitive immunohistochemical markers to distinguish between these tumor types have not been defined.
In the present study, we used a tissue array composed of 27 BOVs, 78 LMPs and 23 LG TOVs to evaluate the protein expression of a subset of selected candidates identified in our previous studies (Ape1, Set, Ran, Ccne1 and Trail) or known to be implicated in epithelial ovarian cancer disease (p21, Ccnb1, Ckd1).
Statistically significant difference in protein expression was observed for Ccnb1 when BOV tumors were compared to LMP tumors (p = 0.003). When BOV were compared to LG TOV tumors, Trail was significantly expressed at a higher level in malignant tumors (p = 0.01). Expression of p21 was significantly lower in LG tumors when compared with either BOVs (p = 0.03) or LMPs (p = 0.001). We also observed that expression of p21 was higher in LMP tumors with no (p = 0.02) or non-invasive (p = 0.01) implants compared to the LMP associated with invasive implants.
This study represents an extensive analyse of the benign and highly differentiated ovarian disease from an immunohistochemical perspective.
PMCID: PMC2610034  PMID: 19032793
12.  Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors 
Molecular Cancer  2006;5:50.
The mucin MUC16 and the glycosylphosphatidylinositol anchored glycoprotein mesothelin likely facilitate the peritoneal metastasis of ovarian tumors. The biochemical basis and the kinetics of the binding between these two glycoproteins are not clearly understood. Here we have addressed this deficit and provide further evidence supporting the role of the MUC16-mesothelin interaction in facilitating cell-cell binding under conditions that mimic the peritoneal environment.
In this study we utilize recombinant-Fc tagged human mesothelin to measure the binding kinetics of this glycoprotein to MUC16 expressed on the ovarian tumor cell line OVCAR-3. OVCAR-3 derived sublines that did not express MUC16 showed no affinity for mesothelin. In a flow cytometry-based assay mesothelin binds with very high affinity to the MUC16 on the OVCAR-3 cells with an apparent Kd of 5–10 nM. Maximum interaction occurs within 5 mins of incubation of the recombinant mesothelin with the OVCAR-3 cells and significant binding is observed even after 10 sec. A five-fold molar excess of soluble MUC16 was unable to completely inhibit the binding of mesothelin to the OVCAR-3 cells. Oxidation of the MUC16 glycans, removal of its N-linked oligosaccharides, and treatment of the mucin with wheat germ agglutinin and erythroagglutinating phytohemagglutinin abrogates its binding to mesothelin. These observations suggest that at least a subset of the MUC16-asscociated N-glycans is required for binding to mesothelin. We also demonstrate that MUC16 positive ovarian tumor cells exhibit increased adherence to A431 cells transfected with mesothelin (A431-Meso+). Only minimal adhesion is observed between MUC16 knockdown cells and A431-Meso+ cells. The binding between the MUC16 expressing ovarian tumor cells and the A431-Meso+ cells occurs even in the presence of ascites from patients with ovarian cancer.
The strong binding kinetics of the mesothelin-MUC16 interaction and the cell adhesion between ovarian tumor cells and A431-Meso+ even in the presence of peritoneal fluid strongly support the importance of these two glycoproteins in the peritoneal metastasis of ovarian tumors. The demonstration that N-linked glycans are essential for mediating mesothlein-MUC16 binding may lead to novel therapeutic targets to control the spread of ovarian carcinoma.
PMCID: PMC1635730  PMID: 17067392

Results 1-12 (12)