Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1 
The ISME Journal  2013;7(6):1211-1226.
Planococcus halocryophilus strain Or1, isolated from high Arctic permafrost, grows and divides at −15 °C, the lowest temperature demonstrated to date, and is metabolically active at −25 °C in frozen permafrost microcosms. To understand how P. halocryophilus Or1 remains active under the subzero and osmotically dynamic conditions that characterize its native permafrost habitat, we investigated the genome, cell physiology and transcriptomes of growth at −15 °C and 18% NaCl compared with optimal (25 °C) temperatures. Subzero growth coincides with unusual cell envelope features of encrustations surrounding cells, while the cytoplasmic membrane is significantly remodeled favouring a higher ratio of saturated to branched fatty acids. Analyses of the 3.4 Mbp genome revealed that a suite of cold and osmotic-specific adaptive mechanisms are present as well as an amino acid distribution favouring increased flexibility of proteins. Genomic redundancy within 17% of the genome could enable P. halocryophilus Or1 to exploit isozyme exchange to maintain growth under stress, including multiple copies of osmolyte uptake genes (Opu and Pro genes). Isozyme exchange was observed between the transcriptome data sets, with selective upregulation of multi-copy genes involved in cell division, fatty acid synthesis, solute binding, oxidative stress response and transcriptional regulation. The combination of protein flexibility, resource efficiency, genomic plasticity and synergistic adaptation likely compensate against osmotic and cold stresses. These results suggest that non-spore forming P. halocryophilus Or1 is specifically suited for active growth in its Arctic permafrost habitat (ambient temp. ∼−16 °C), indicating that such cryoenvironments harbor a more active microbial ecosystem than previously thought.
PMCID: PMC3660685  PMID: 23389107
cryophile; permafrost; cold-active; cold/osmotic adaptation; subzero environments
3.  Sulfur Isotope Enrichment during Maintenance Metabolism in the Thermophilic Sulfate-Reducing Bacterium Desulfotomaculum putei▿  
Applied and Environmental Microbiology  2009;75(17):5621-5630.
Values of Δ34S (\documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}={\delta}^{34}S_{HS}-{\delta}^{34}S_{SO_{4}}\end{equation*}\end{document}, where δ34SHS and \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\delta}^{34}S_{SO_{4}}\end{equation*}\end{document} indicate the differences in the isotopic compositions of the HS− and SO42− in the eluent, respectively) for many modern marine sediments are in the range of −55 to −75‰, much greater than the −2 to −46‰ ɛ34S (kinetic isotope enrichment) values commonly observed for microbial sulfate reduction in laboratory batch culture and chemostat experiments. It has been proposed that at extremely low sulfate reduction rates under hypersulfidic conditions with a nonlimited supply of sulfate, isotopic enrichment in laboratory culture experiments should increase to the levels recorded in nature. We examined the effect of extremely low sulfate reduction rates and electron donor limitation on S isotope fractionation by culturing a thermophilic, sulfate-reducing bacterium, Desulfotomaculum putei, in a biomass-recycling culture vessel, or “retentostat.” The cell-specific rate of sulfate reduction and the specific growth rate decreased progressively from the exponential phase to the maintenance phase, yielding average maintenance coefficients of 10−16 to 10−18 mol of SO4 cell−1 h−1 toward the end of the experiments. Overall S mass and isotopic balance were conserved during the experiment. The differences in the δ34S values of the sulfate and sulfide eluting from the retentostat were significantly larger, attaining a maximum Δ34S of −20.9‰, than the −9.7‰ observed during the batch culture experiment, but differences did not attain the values observed in marine sediments.
PMCID: PMC2737900  PMID: 19561180
4.  Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada 
This study provides experimental evidence for biologically induced precipitation of magnesium carbonates, specifically dypingite (Mg5(CO3)4(OH)2·5H2O), by cyanobacteria from an alkaline wetland near Atlin, British Columbia. This wetland is part of a larger hydromagnesite (Mg5(CO3)4(OH)2·4H2O) playa. Abiotic and biotic processes for magnesium carbonate precipitation in this environment are compared.
Field observations show that evaporation of wetland water produces carbonate films of nesquehonite (MgCO3·3H2O) on the water surface and crusts on exposed surfaces. In contrast, benthic microbial mats possessing filamentous cyanobacteria (Lyngbya sp.) contain platy dypingite (Mg5(CO3)4(OH)2·5H2O) and aragonite. Bulk carbonates in the benthic mats (δ13C avg. = 6.7‰, δ18O avg. = 17.2‰) were isotopically distinguishable from abiotically formed nesquehonite (δ13C avg. = 9.3‰, δ18O avg. = 24.9‰). Field and laboratory experiments, which emulated natural conditions, were conducted to provide insight into the processes for magnesium carbonate precipitation in this environment. Field microcosm experiments included an abiotic control and two microbial systems, one containing ambient wetland water and one amended with nutrients to simulate eutrophic conditions. The abiotic control developed an extensive crust of nesquehonite on its bottom surface during which [Mg2+] decreased by 16.7% relative to the starting concentration. In the microbial systems, precipitation occurred within the mats and was not simply due to the capturing of mineral grains settling out of the water column. Magnesium concentrations decreased by 22.2% and 38.7% in the microbial systems, respectively. Laboratory experiments using natural waters from the Atlin site produced rosettes and flakey globular aggregates of dypingite precipitated in association with filamentous cyanobacteria dominated biofilms cultured from the site, whereas the abiotic control again precipitated nesquehonite.
Microbial mats in the Atlin wetland create ideal conditions for biologically induced precipitation of dypingite and have presumably played a significant role in the development of this natural Mg-carbonate playa. This biogeochemical process represents an important link between the biosphere and the inorganic carbon pool.
PMCID: PMC2213640  PMID: 18053262
5.  Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth 
Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5–3.3 Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 μm filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers. Associated with the mat is a small colony of rods–vibroids that probably represent sulphur-reducing bacteria. An embedded suite of evaporite minerals and desiccation cracks in the surface of the mat demonstrates that it was periodically exposed to the air in an evaporitic environment. We conclude that DNA-damaging UV radiation fluxes at the surface of the Earth at this period must either have been low (absorbed by CO2, H2O, a thin organic haze from photo-dissociated CH4, or SO2 from volcanic outgassing; scattered by volcanic, and periodically, meteorite dust, as well as by the upper layers of the microbial mat) and/or that the micro-organisms exhibited efficient gene repair/survival strategies.
PMCID: PMC1664690  PMID: 17008224
Early Mid Archaean; Barberton; microfossils; littoral zone; UV environment
6.  Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault 
Applied and Environmental Microbiology  2005;71(12):8773-8783.
Alkaline, sulfidic, 54 to 60°C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO42− in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO42− reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.
PMCID: PMC1317344  PMID: 16332873
7.  Nocturnal Production of Endospores in Natural Populations of Epulopiscium-Like Surgeonfish Symbionts 
Journal of Bacteriology  2005;187(21):7460-7470.
Prior studies have described a morphologically diverse group of intestinal microorganisms associated with surgeonfish. Despite their diversity of form, 16S rRNA gene surveys and fluorescent in situ hybridizations indicate that these bacteria are low-G+C gram-positive bacteria related to Epulopiscium spp. Many of these bacteria exhibit an unusual mode of reproduction, developing multiple offspring intracellularly. Previous reports have suggested that some Epulopiscium-like symbionts produce dormant or phase-bright intracellular offspring. Close relatives of Epulopiscium, such as Metabacterium polyspora and Clostridium lentocellum, are endospore-forming bacteria, which raises the possibility that the phase-bright offspring are endospores. Structural evidence and the presence of dipicolinic acid demonstrate that phase-bright offspring of Epulopiscium-like bacteria are true endospores. In addition, endospores are formed as part of the normal daily life cycle of these bacteria. In the populations studied, mature endospores were seen only at night and the majority of cells in a given population produced one or two endospores per mother cell. Phylogenetic analyses confirmed the close relationship between the endospore-forming surgeonfish symbionts characterized here and previously described Epulopiscium spp. The broad distribution of endospore formation among the Epulopiscium phylogenetic group raises the possibility that sporulation is a characteristic of the group. We speculate that spore formation in Epulopiscium-like symbionts may be important for dispersal and may also enhance survival in the changing conditions of the fish intestinal tract.
PMCID: PMC1272977  PMID: 16237029

Results 1-7 (7)