PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  An Exploration of the Effect of Hemodynamic Changes Due to Normal Aging on the fNIRS Response to Semantic Processing of Words 
Like other neuroimaging techniques assessing cerebral blood oxygenation, near-infrared spectroscopy (NIRS) has been applied in many neurocognitive studies. With NIRS, neural activation can be explored indirectly via hemodynamic changes in the imaged region. In studies of aging, changes in baseline physiology and brain anatomy confound NIRS measures seeking to investigate age-related changes in neuronal activity. The field is thus hampered by the complexity of the aging process itself, and statistical inferences from functional data acquired by optical imaging techniques must be interpreted with care. Multimodal integration of NIRS with both structural and baseline physiological assessments is crucial to avoid misinterpreting neuroimaging signals. In this study, a combination of two different optical techniques, anatomical MRI and Arterial Spin Labeling (ASL), was used to investigate age-related changes in activation during a lexical-semantic processing task. Quantitative analysis revealed decreased baseline oxyhemoglobin and cerebral blood flow in the older adults. Using baseline physiology measures as regressors in the investigation of functional concentration changes when doing analyses of variance, we found significant changes in task-induced areas of activity. In the right hemisphere, more significant age-related activity was observed around the junction of the inferior frontal gyrus and inferior precentral sulcus, along with engagement of Wernicke’s area. In the left hemisphere, the degree and extent of frontal activation, including the dorsolateral prefrontal cortex and inferior frontal gyrus, differed between age groups. Measuring background physiological differences and using their values as regressors in statistical analyses allowed a more appropriate, age-corrected understanding of the functional differentiations between age groups. Age-corrected baselines are thus essential to investigate which components of the NIRS signal are altered by aging.
doi:10.3389/fneur.2014.00249
PMCID: PMC4248672  PMID: 25520697
cognitive aging; language; semantics; functional NIRS; anatomical MRI; baseline physiology; hemodynamic response; ASL
2.  Hybrid FMT-MRI applied to in vivo atherosclerosis imaging 
Biomedical Optics Express  2014;5(5):1664-1676.
Combining Fluorescent Molecular Tomography (FMT) with anatomical imaging, e.g. MRI facilitates interpreting functional information. Furthermore, using a heterogeneous model for light propagation has been shown in simulations to be superior to homogeneous modeling to quantify fluorescence. Here, we present a combined FMT-MRI system and apply it to heart and aorta molecular imaging, a challenging area due to strong tissue heterogeneity and the presence of air-voids due to lungs. First investigating performance in a phantom and mouse corpse, the MRI-enabled heterogeneous models resulted in an improved quantification of fluorescence reconstructions. The system was then used in mice for in vivo atherosclerosis molecular imaging. Results show that, when using the heterogeneous model, reconstructions were in agreement with the ex vivo measurements. Therefore, the proposed system might serve as a powerful imaging tool for atherosclerosis in mice.
doi:10.1364/BOE.5.001664
PMCID: PMC4026902  PMID: 24877023
(170.3880) Medical and biological imaging; (170.3890) Medical optics instrumentation; (170.6280) Spectroscopy, fluorescence and luminescence
3.  Myeloid-Specific Rictor Deletion Induces M1 Macrophage Polarization and Potentiates In Vivo Pro-Inflammatory Response to Lipopolysaccharide 
PLoS ONE  2014;9(4):e95432.
The phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR) ligands. The mechanistic target of rapamycin complex 2 (mTORC2) relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS), which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to sceptic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation.
doi:10.1371/journal.pone.0095432
PMCID: PMC3989321  PMID: 24740015
4.  Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33 
The Journal of Experimental Medicine  2012;209(8):1505-1517.
IL-1α promotes a cascade of cytokine production from epithelial cells culminating in Th2 immunity to house dust mite allergens.
House dust mite (HDM) is one of the most common allergens worldwide. In this study, we have addressed the involvement of IL-1 in the interaction between HDM and the innate immune response driven by lung epithelial cells (ECs) and dendritic cells (DCs) that leads to asthma. Mice lacking IL-1R on radioresistant cells, but not hematopoietic cells, failed to mount a Th2 immune response and did not develop asthma to HDM. Experiments performed in vivo and in isolated air–liquid interface cultures of bronchial ECs showed that TLR4 signals induced the release of IL-1α, which then acted in an autocrine manner to trigger the release of DC-attracting chemokines, GM-CSF, and IL-33. Consequently, allergic sensitization to HDM was abolished in vivo when IL-1α, GM-CSF, or IL-33 was neutralized. Thymic stromal lymphopoietin (TSLP) became important only when high doses of allergen were administered. These findings put IL-1α upstream in the cytokine cascade leading to epithelial and DC activation in response to inhaled HDM allergen.
doi:10.1084/jem.20112691
PMCID: PMC3409497  PMID: 22802353
5.  Involvement of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease: A Different Implication for Colonic and Ileal Disease? 
PLoS ONE  2011;6(10):e25589.
Background
Endoplasmic reticulum (ER) stress has been suggested to play a role in inflammatory bowel disease (IBD). The three branches (ATF6, IRE1 and PERK) of the unfolded protein response (UPR) have different roles and are not necessarily activated simultaneously.
Methodology/Principal Findings
Expression of UPR-related genes was investigated in colonic and ileal biopsies of 23 controls, 15 ulcerative colitis (UC) and 54 Crohn's disease (CD) patients. This expression was confirmed at protein level in colonic and ileal samples of five controls, UC and CD patients. HSPA5, PDIA4 and XBP1s were significantly increased in colonic IBD at mRNA and/or protein levels, indicating activation of the ATF6 and IRE1 branch. Colonic IBD was associated with increased phosphorylation of EIF2A suggesting the activation of the PERK branch, but subsequent induction of GADD34 was not observed. In ileal CD, no differential expression of the UPR-related genes was observed, but our data suggested a higher basal activation of the UPR in the ileal mucosa of controls. This was confirmed by the increased expression of 16 UPR-related genes as 12 of them were significantly more expressed in ileal controls compared to colonic controls. Tunicamycin stimulation of colonic and ileal samples of healthy individuals revealed that although the ileal mucosa is exhibiting this higher basal UPR activation, it is still responsive to ER stress, even more than colonic mucosa.
Conclusions/Significance
Activation of the three UPR-related arms is seen in colonic IBD-associated inflammation. However, despite EIF2A activation, inflamed colonic tissue did not increase GADD34 expression, which is usually involved in re-establishment of ER homeostasis. This study also implies the presence of a constitutive UPR activation in healthy ileal mucosa, with no further activation during inflammation. Therefore, engagement of the UPR differs between colon and ileum and this could be a factor in the development of ileal or colonic disease.
doi:10.1371/journal.pone.0025589
PMCID: PMC3196494  PMID: 22028783
6.  Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen 
The Journal of Experimental Medicine  2010;207(10):2097-2111.
It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen.
doi:10.1084/jem.20101563
PMCID: PMC2947072  PMID: 20819925

Results 1-6 (6)