Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Circulating Conventional and Plasmacytoid Dendritic Cell Subsets Display Distinct Kinetics during In Vivo Repeated Allergen Skin Challenges in Atopic Subjects 
BioMed Research International  2014;2014:231036.
Upon allergen challenge, DC subsets are recruited to target sites under the influence of chemotactic agents; however, details pertinent to their trafficking remain largely unknown. We investigated the kinetic profiles of blood and skin-infiltrating DC subsets in twelve atopic subjects receiving six weekly intradermal allergen and diluent injections. The role of activin-A, a cytokine induced in allergic and tissue repair processes, on the chemotactic profiles of DC subsets was also examined. Plasmacytoid (pDCs) and conventional DCs (cDCs) were evaluated at various time-points in the blood and skin. In situ activin-A expression was assessed in the skin and its effects on chemokine receptor expression of isolated cDCs were investigated. Blood pDCs were reduced 1 h after challenge, while cDCs decreased gradually within 24 h. Skin cDCs increased significantly 24 h after the first challenge, inversely correlating with blood cDCs. Activin-A in the skin increased 24 h after the first allergen challenge and correlated with infiltrating cDCs. Activin-A increased the CCR10/CCR4 expression ratio in cultured human cDCs. DC subsets demonstrate distinct kinetic profiles in the blood and skin especially during acute allergic inflammation, pointing to disparate roles depending on each phase of the inflammatory response. The effects of activin-A on modulating the chemotactic profile of cDCs suggest it may be a plausible therapeutic target for allergic diseases.
PMCID: PMC4022198  PMID: 24877070
2.  Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets 
Nature medicine  2007;13(5):570-578.
Osteopontin (Opn) is important for T helper type 1 (TH1) immunity and autoimmunity. However, the role of this cytokine in TH2-mediated allergic disease as well as its effects on primary versus secondary antigenic encounters remain unclear. Here we demonstrate that OPN is expressed in the lungs of asthmatic individuals and that Opn-s, the secreted form of Opn, exerts opposing effects on mouse TH2 effector responses and subsequent allergic airway disease: pro-inflammatory at primary systemic sensitization, and anti-inflammatory during secondary pulmonary antigenic challenge. These effects of Opn-s are mainly mediated by the regulation of TH2-suppressing plasmacytoid dendritic cells (DCs) during primary sensitization and TH2-promoting conventional DCs during secondary antigenic challenge. Therapeutic administration of recombinant Opn during pulmonary secondary antigenic challenge decreased established TH2 responses and protected mice from allergic disease. These effects on TH2 allergic responses suggest that Opn-s is an important therapeutic target and provide new insight into its role in immunity.
PMCID: PMC3384679  PMID: 17435770
3.  Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death 
Science (New York, N.Y.)  2001;292(5517):727-730.
Multiple death signals influence mitochondria during apoptosis, yet the critical initiating event for mitochondrial dysfunction in vivo has been unclear. tBID, the caspase-activated form of a “BH3-domain–only” BCL-2 family member, triggers the homooligomerization of “multidomain” conserved proapoptotic family members BAK or BAX, resulting in the release of cytochrome c from mitochondria. We find that cells lacking both Bax and Bak, but not cells lacking only one of these components, are completely resistant to tBID-induced cytochrome c release and apoptosis. Moreover, doubly deficient cells are resistant to multiple apoptotic stimuli that act through disruption of mitochondrial function: staurosporine, ultraviolet radiation, growth factor deprivation, etoposide, and the endoplasmic reticulum stress stimuli thapsigargin and tunicamycin. Thus, activation of a “multidomain” proapoptotic member, BAX or BAK, appears to be an essential gateway to mitochondrial dysfunction required for cell death in response to diverse stimuli.
PMCID: PMC3049805  PMID: 11326099
4.  Activin-A induces regulatory T cells that suppress T helper cell immune responses and protect from allergic airway disease 
The Journal of Experimental Medicine  2009;206(8):1769-1785.
Activin-A is a pleiotropic cytokine that participates in developmental, inflammatory, and tissue repair processes. Still, its effects on T helper (Th) cell–mediated immunity, critical for allergic and autoimmune diseases, are elusive. We provide evidence that endogenously produced activin-A suppresses antigen-specific Th2 responses and protects against airway hyperresponsiveness and allergic airway disease in mice. Importantly, we reveal that activin-A exerts suppressive function through induction of antigen-specific regulatory T cells that suppress Th2 responses in vitro and upon transfer in vivo. In fact, activin-A also suppresses Th1-driven responses, pointing to a broader immunoregulatory function. Blockade of interleukin 10 and transforming growth factor β1 reverses activin-A–induced suppression. Remarkably, transfer of activin-A–induced antigen-specific regulatory T cells confers protection against allergic airway disease. This beneficial effect is associated with dramatically decreased maturation of draining lymph node dendritic cells. Therapeutic administration of recombinant activin-A during pulmonary allergen challenge suppresses Th2 responses and protects from allergic disease. Finally, we demonstrate that immune cells infiltrating the lungs from individuals with active allergic asthma, and thus nonregulated inflammatory response, exhibit significantly decreased expression of activin-A's responsive elements. Our results uncover activin-A as a novel suppressive factor for Th immunity and a critical controller of allergic airway disease.
PMCID: PMC2722168  PMID: 19620629
5.  Suppression of autoimmune disease after vaccination with autoreactive T cells that express Qa-1 peptide complexes 
Journal of Clinical Investigation  2004;113(8):1218-1224.
The ability of autoreactive T cells to provoke autoimmune disease is well documented. The finding that immunization with attenuated autoreactive T cells (T cell vaccination, or TCV) can induce T cell–dependent inhibition of autoimmune responses has opened the possibility that regulatory T cells may be harnessed to inhibit autoimmune disease. Progress in the clinical application of TCV, however, has been slow, in part because the underlying mechanism has remained clouded in uncertainty. We have investigated the molecular basis of TCV-induced disease resistance in two murine models of autoimmunity: herpes simplex virus-1 (KOS strain)–induced herpes stromal keratitis and murine autoimmune diabetes in non-obese diabetic (NOD) mice. We find that the therapeutic effects of TCV depend on activation of suppressive CD8 cells that specifically recognize Qa-1–bound peptides expressed by autoreactive CD4 cells. We clarify the molecular interaction between Qa-1 and self peptides that generates biologically active ligands capable of both inducing suppressive CD8 cells and targeting them to autoreactive CD4 cells. These studies suggest that vaccination with peptide-pulsed cells bearing the human equivalent of murine Qa-1 (HLA-E) may represent a convenient and effective clinical approach to cellular therapy of autoimmune disease.
PMCID: PMC385407  PMID: 15085201
6.  T Cell Costimulation through CD28 Depends on Induction of the Bcl-xγ Isoform 
The molecular basis of CD28-dependent costimulation of T cells is poorly understood. Bcl-xγ is a member of the Bcl-x family whose expression is restricted to activated T cells and requires CD28-dependent ligation for full expression. We report that Bcl-xγ–deficient (Bcl-xγ−/−) T cells display defective proliferative and cytokine responses to CD28-dependent costimulatory signals, impaired memory responses to proteolipid protein peptide (PLP), and do not develop PLP-induced experimental autoimmune encephalomyelitis (EAE). In contrast, enforced expression of Bcl-xγ largely replaces the requirement for B7-dependent ligation of CD28. These findings identify the Bcl-xγ cytosolic protein as an essential downstream link in the CD28-dependent signaling pathway that underlies T cell costimulation.
PMCID: PMC2194014  PMID: 12093873
Bcl-xγ; CD28; T cell; costimulation; EAE
7.  Genetic Regulation of Long-Term Nonprogression in E-55+ Murine Leukemia Virus Infection in Mice 
Journal of Virology  1999;73(11):9232-9236.
Certain inbred mouse strains display progression to lymphoma development after infection with E-55+ murine leukemia virus (E-55+ MuLV), while others demonstrate long-term nonprogression. This difference in disease progression occurs despite the fact that E-55+ MuLV causes persistent infection in both immunocompetent BALB/c–H-2k (BALB.K) progressor (P) and C57BL/10–H-2k (B10.BR) long-term nonprogressor (LTNP) mice. In contrast to immunocompetent mice, immunosuppressed mice from both P and LTNP strains develop lymphomas about 2 months after infection, indicating that the LTNP phenotype is determined by the immune response of the infected mouse. In this study, we used bone marrow chimeras to demonstrate that the LTNP phenotype is associated with the genotype of donor bone marrow and not the recipient microenvironment. In addition, we have mapped a genetic locus that may be responsible for the LTNP trait. Microsatellite-based linkage analysis demonstrated that a non-major histocompatibility complex gene on chromosome 15 regulates long-term survival and is located in the same region as the Rfv3 gene. Rfv3 is involved in recovery from Friend virus-induced leukemia and has been demonstrated to regulate neutralizing virus antibody titers. In our studies, however, both P and LTNP strains produce similar titers of neutralizing and cytotoxic anti-E-55+ MuLV. Therefore, while it is possible that Rfv3 influences the course of E-55+ MuLV infection, it is more likely that the LTNP phenotype in E-55+ MuLV-infected mice is regulated by a different, closely linked gene.
PMCID: PMC112957  PMID: 10516031

Results 1-7 (7)