Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Malaria infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system 
Cell host & microbe  2013;13(5):521-534.
Humans and mice infected with different Plasmodium strains are known to produce microvesicles derived from the infected red blood cells (RBC), denoted RMVs. Studies in mice have shown that RMVs are elevated during infection and have pro-inflammatory activity. Here we present a detailed characterization of RMV composition and function in the human malaria parasite Plasmodium falciparum. Proteomics profiling revealed the enrichment of multiple host and parasite proteins, in particular of parasite antigens associated with host cell membranes and proteins involved in parasite invasion into RBCs. RMVs are quantitatively released during the asexual parasite cycle prior to parasite egress. RMVs demonstrate potent immunomodulatory properties on human primary macrophages and neutrophils. Additionally, RMVs are internalized by infected red blood cells and stimulate production of transmission stage parasites in a dose-dependent manner. Thus, RMVs mediate cellular communication within the parasite population and with the host innate immune system.
PMCID: PMC3687518  PMID: 23684304
2.  Functional Analysis of the Exported Type IV HSP40 Protein PfGECO in Plasmodium falciparum Gametocytes ▿ † 
Eukaryotic Cell  2011;10(11):1492-1503.
During Plasmodium falciparum infection, host red blood cell (RBC) remodeling is required for the parasite's survival. Such modifications are mediated by the export of parasite proteins into the RBC that alter the architecture of the RBC membrane and enable cytoadherence. It is probable that some exported proteins also play a protective role against the host defense response. This may be of particular importance for the gametocyte stage of the life cycle that is responsible for malaria transmission, since the gametocyte remains in contact with blood as it proceeds through five morphological stages (I to V) during its 12-day maturation. Using microarray analysis, we identified several genes with encoded secretory or export sequences that were differentially expressed during early gametocytogenesis. One of these, PfGECO, encodes a predicted type IV heat shock protein 40 (HSP40) that we show is expressed in gametocyte stages I to IV and is exported to the RBC cytoplasm. HSPs are traditionally induced under stressful conditions to maintain homeostasis, but PfGECO expression was not increased upon heat shock, suggesting an alternate function. Targeted disruption of PfGECO indicated that the gene is not essential for gametocytogenesis in vitro, and quantitative reverse transcriptase PCR (RT-PCR) showed that there was no compensatory expression of the other type IV HSP40 genes. Although P. falciparum HSP40 members are implicated in the trafficking of proteins to the RBC surface, removal of PfGECO did not affect the targeting of other exported gametocyte proteins. This work has expanded the repertoire of known gametocyte-exported proteins to include a type IV HSP40, PfGECO.
PMCID: PMC3209067  PMID: 21965515
3.  Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells 
The Journal of Experimental Medicine  2009;206(12):2701-2715.
Forkhead box P3 (FOXP3)+CD4+CD25+ inducible regulatory T (iT reg) cells play an important role in immune tolerance and homeostasis. In this study, we show that the transforming growth factor-β (TGF-β) induces the expression of the Runt-related transcription factors RUNX1 and RUNX3 in CD4+ T cells. This induction seems to be a prerequisite for the binding of RUNX1 and RUNX3 to three putative RUNX binding sites in the FOXP3 promoter. Inactivation of the gene encoding RUNX cofactor core-binding factor-β (CBFβ) in mice and small interfering RNA (siRNA)-mediated suppression of RUNX1 and RUNX3 in human T cells resulted in reduced expression of Foxp3. The in vivo conversion of naive CD4+ T cells into Foxp3+ iT reg cells was significantly decreased in adoptively transferred CbfbF/F CD4-cre naive T cells into Rag2−/− mice. Both RUNX1 and RUNX3 siRNA silenced human T reg cells and CbfbF/F CD4-cre mouse T reg cells showed diminished suppressive function in vitro. Circulating human CD4+ CD25high CD127− T reg cells significantly expressed higher levels of RUNX3, FOXP3, and TGF-β mRNA compared with CD4+CD25− cells. Furthermore, FOXP3 and RUNX3 were colocalized in human tonsil T reg cells. These data demonstrate Runx transcription factors as a molecular link in TGF-β–induced Foxp3 expression in iT reg cell differentiation and function.
PMCID: PMC2806624  PMID: 19917773
4.  GATA3-Driven Th2 Responses Inhibit TGF-β1–Induced FOXP3 Expression and the Formation of Regulatory T Cells 
PLoS Biology  2007;5(12):e329.
Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-β–mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy.
Author Summary
Specific immune responses against foreign or autologous antigens are driven by specialized epitope-specific T cells, whose numbers expand upon recognition of antigen found on professional antigen-presenting cells. The subsequent maturation process involves the differentiation of certain T cell phenotypes such as pro-inflammatory cells (Th1, Th2, Th17) or regulatory T (Treg) cells, which serve to keep the immune response in check. The current study focuses on the role of two key transcription factors—FOXP3 and GATA3—in controlling the commitment of these cells. We demonstrate that the Th2 cytokine IL-4 inhibits the induction of FOXP3 and thus inhibits the generation of inducible Treg cells. We show that IL-4–induced GATA3 mediates FOXP3 inhibition by directly binding to a GATA element in the FOXP3 promoter. We hypothesize that therapeutic agents aimed at neutralizing IL-4 could be a novel strategy to facilitate inducible Treg cell generation and thus promotion of tolerance in allergies and other Th2-dominated diseases.
It is shown that Th2 responses prevent the generation of inducible Tregs. This is mediated by IL-4 induction of GATA3, which binds directly to and represses the FOXP3 promoter. This mechanism is likely to be relevant in the induction of immunotolerance, particularly in allergic diseases.
PMCID: PMC2222968  PMID: 18162042

Results 1-4 (4)