Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Novel Avian-Origin Influenza A (H7N9) Virus Attachment to the Respiratory Tract of Five Animal Models 
Journal of Virology  2014;88(8):4595-4599.
We determined the pattern of attachment of the avian-origin H7N9 influenza viruses A/Anhui/1/2013 and A/Shanghai/1/2013 to the respiratory tract in ferrets, macaques, mice, pigs, and guinea pigs and compared it to that in humans. The H7N9 attachment pattern in macaques, mice, and to a lesser extent pigs and guinea pigs resembled that in humans more closely than the attachment pattern in ferrets. This information contributes to our knowledge of the different animal models for influenza.
PMCID: PMC3993775  PMID: 24478425
2.  Marked Endotheliotropism of Highly Pathogenic Avian Influenza Virus H5N1 following Intestinal Inoculation in Cats 
Journal of Virology  2012;86(2):1158-1165.
Highly pathogenic avian influenza virus (HPAIV) H5N1 can infect mammals via the intestine; this is unusual since influenza viruses typically infect mammals via the respiratory tract. The dissemination of HPAIV H5N1 following intestinal entry and associated pathogenesis are largely unknown. To assess the route of spread of HPAIV H5N1 to other organs and to determine its associated pathogenesis, we inoculated infected chicken liver homogenate directly into the intestine of cats by use of enteric-coated capsules. Intestinal inoculation of HPAIV H5N1 resulted in fatal systemic disease. The spread of HPAIV H5N1 from the lumen of the intestine to other organs took place via the blood and lymphatic vascular systems but not via neuronal transmission. Remarkably, the systemic spread of the virus via the vascular system was associated with massive infection of endothelial and lymphendothelial cells, resulting in widespread hemorrhages. This is unique for influenza in mammals and resembles the pathogenesis of HPAIV infection in terrestrial poultry. It contrasts with the pathogenesis of systemic disease from the same virus following entry via the respiratory tract, where lesions are characterized mainly by necrosis and inflammation and are associated with the presence of influenza virus antigen in parenchymal, not endothelial cells. The marked endotheliotropism of the virus following intestinal inoculation indicates that the pathogenesis of systemic influenza virus infection in mammals may differ according to the portal of entry.
PMCID: PMC3255817  PMID: 22090101
3.  Distinct Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury Pathways in Two Different Nonhuman Primate Species▿† 
Journal of Virology  2011;85(9):4234-4245.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), caused by influenza A virus H5N1 and severe acute respiratory syndrome coronavirus (SARS-CoV), supposedly depend on activation of the oxidative-stress machinery that is coupled with innate immunity, resulting in a strong proinflammatory host response. Inflammatory cytokines, such as interleukin 1β (IL-1β), IL-8, and IL-6, play a major role in mediating and amplifying ALI/ARDS by stimulating chemotaxis and activation of neutrophils. To obtain further insight into the pathogenesis of SARS-CoV-associated ALI, we compared SARS-CoV infections in two different nonhuman primate species, cynomolgus macaques and African green monkeys. Viral titers in the upper and lower respiratory tract were not significantly different in SARS-CoV-infected macaques and African green monkeys. Inflammatory cytokines that play a major role in mediating and amplifying ALI/ARDS or have neutrophil chemoattractant activity, such as IL-6, IL-8, CXCL1, and CXCL2, were, however, induced only in macaques. In contrast, other proinflammatory cytokines and chemokines, including osteopontin and CCL3, were upregulated in the lungs of African green monkeys to a significantly greater extent than in macaques. Because African green monkeys developed more severe ALI than macaques, with hyaline membrane formation, some of these differentially expressed proinflammatory genes may be critically involved in development of the observed pathological changes. Induction of distinct proinflammatory genes after SARS-CoV infection in different nonhuman primate species needs to be taken into account when analyzing outcomes of intervention strategies in these species.
PMCID: PMC3126247  PMID: 21325418
4.  Highly Pathogenic Avian Influenza Virus H5N1 Infects Alveolar Macrophages without Virus Production or Excessive TNF-Alpha Induction 
PLoS Pathogens  2011;7(6):e1002099.
Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction.
Author Summary
Alveolar macrophages (AM), which reside in the alveolar lumen, usually dampen down the host immune response to incoming pathogens. However, they are thought to increase inflammation during highly pathogenic avian influenza virus (HPAIV) H5N1 infections, which cause severe and often fatal disease in humans. This is based on experiments with human macrophages cultured from monocytes rather than with human AM. Here we show that human AM, collected via broncho-alveolar lavage from healthy volunteers, can become infected with HPAIV H5N1. However, this results in neither induction of the pro-inflammatory cytokine TNF-alpha nor virus production. Therefore, AM are most likely not responsible for the excessive cytokine response or high viral load during human HPAIV H5N1 infections as assumed previously. These data significantly changes our insight into the pathogenesis of HPAIV H5N1 pneumonia in humans, indicating that other cells than AM must be responsible for the excessive pro-inflammatory cytokine profile observed during HPAIV H5N1 infections.
PMCID: PMC3121882  PMID: 21731493
5.  Experimental Pandemic (H1N1) 2009 Virus Infection of Cats 
Emerging Infectious Diseases  2010;16(11):1745-1747.
To demonstrate that pandemic (H1N1) 2009 virus may cause respiratory disease in cats, we intratracheally infected cats. Diffuse alveolar damage developed. Seroconversion of sentinel cats indicated cat-to-cat virus transmission. Unlike in cats infected with highly pathogenic avian influenza virus (H5N1), extrarespiratory lesions did not develop in cats infected with pandemic (H1N1) 2009 virus.
PMCID: PMC3294532  PMID: 21029533
Pandemic (H1N1) 2009; influenza; viruses; cats; pathogenesis; transmission; pathology; dispatch

Results 1-5 (5)