PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (64)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("idko, Marco")
1.  Accumulation of BDCA1+ Dendritic Cells in Interstitial Fibrotic Lung Diseases and Th2-High Asthma 
PLoS ONE  2014;9(6):e99084.
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1+ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1+ DCs, we found that the numbers of BDCA1+ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1+ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
doi:10.1371/journal.pone.0099084
PMCID: PMC4051692  PMID: 24915147
2.  Does Chronic Obstructive Pulmonary Disease with or without Type 2 Diabetes Mellitus Influence the Risk of Lung Cancer? Result from a Population-Based Cohort Study 
PLoS ONE  2014;9(5):e98290.
Background
Previous studies have suggested that chronic obstructive pulmonary disease (COPD) is an independent risk factor for lung cancer. There are some evidence that people with diabetes are at a risk of developing many forms of cancer, but inconclusive with regard to lung cancer. The aim of this study was to evaluate whether COPD with or without type 2 diabetes mellitus (T2DM) influences the risk of developing lung cancer.
Methods
This is a retrospective cohort study consisting of 20,730 subjects newly diagnosed with COPD (“cases”). Their data was collected from the National Health Insurance system of Taiwan from 1998 to 2010. Among these patients, 5,820 patients had T2DM and 14,910 patients did not have T2DM. The retrospective matched control group consisted of 20,729 subjects without either COPD or T2DM. The control group was matched with the cases for sex, age, and index year (the year that the patient was diagnosed with COPD). The subjects were followed until the end of 2011.
Results
The findings of our study showed that the risk of lung cancer was higher in the COPD group than in the non-COPD group, with adjusted hazard ratio (HR) of 5.02 [95% confidence interval (CI) = 4.23–5.94] among total case group, adjusted HR was 5.38 (95% CI = 4.52–6.40) in the cohort without T2DM and adjusted HR was 4.05 (95% CI = 3.26–5.03) in the cohort with T2DM. We observed a significantly protective effect from lung cancer (adjusted HR = 0.75, 95% CI = 0.63–0.90) of diabetic cohort than non-diabetic cohort among patients with COPD.
Conclusion
Patients with COPD had a significantly higher risk of developing lung cancer than healthy people. However, there was a protective effect of T2DM for lung cancer among patients with COPD. Further investigation may be needed to corroborate the mechanism or bring up reliable reasons.
doi:10.1371/journal.pone.0098290
PMCID: PMC4031125  PMID: 24854189
3.  Pulmonary Fissure Integrity and Collateral Ventilation in COPD Patients 
PLoS ONE  2014;9(5):e96631.
Purpose
To investigate whether the integrity (completeness) of pulmonary fissures affects pulmonary function in patients with chronic obstructive pulmonary disease (COPD).
Materials and Methods
A dataset consisting of 573 CT exams acquired on different subjects was collected from a COPD study. According to the global initiative for chronic obstructive lung disease (GOLD) criteria, these subjects (examinations) were classified into five different subgroups, namely non-COPD (222 subjects), GOLD-I (83 subjects), GOLD-II (141 subjects), GOLD-III (63 subjects), and GOLD-IV (64 subjects), in terms of disease severity. An available computer tool was used to aid in an objective and efficient quantification of fissure integrity. The correlations between fissure integrity, and pulmonary functions (e.g., FEV1, and FEV1/FVC) and COPD severity were assessed using Pearson and Spearman's correlation coefficients, respectively.
Results
For the five sub-groups ranging from non-COPD to GOLD-IV, the average integrities of the right oblique fissure (ROF) were 81.8%, 82.4%, 81.8%, 82.8%, and 80.2%, respectively; the average integrities of the right horizontal fissure (RHF) were 62.6%, 61.8%, 62.1%, 62.2%, and 62.3%, respectively; the average integrities of the left oblique fissure (LOF) were 82.0%, 83.2%, 81.7%, 82.0%, and 78.4%, respectively; and the average integrities of all fissures in the entire lung were 78.0%, 78.6%, 78.1%, 78.5%, and 76.4%, respectively. Their Pearson correlation coefficients with FEV1 and FE1/FVC range from 0.027 to 0.248 with p values larger than 0.05. Their Spearman correlation coefficients with COPD severity except GOLD-IV range from −0.013 to −0.073 with p values larger than 0.08.
Conclusion
There is no significant difference in fissure integrity for patients with different levels of disease severity, suggesting that the development of COPD does not change the completeness of pulmonary fissures and incomplete fissures alone may not contribute to the collateral ventilation.
doi:10.1371/journal.pone.0096631
PMCID: PMC4011857  PMID: 24800803
4.  The Continuum of Physiological Impairment during Treadmill Walking in Patients with Mild-to-Moderate COPD: Patient Characterization Phase of a Randomized Clinical Trial 
PLoS ONE  2014;9(5):e96574.
Background
To have a better understanding of the mechanisms of exercise limitation in mild-to-moderate chronic obstructive pulmonary disease (COPD), we compared detailed respiratory physiology in patients with COPD and healthy age- and sex-matched controls.
Methods
Data were collected during the pre-treatment, patient characterization phase of a multicenter, randomized, double-blind, crossover study. Patients with COPD met Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1 or 2 spirometric criteria, were symptomatic, and had evidence of gas trapping during exercise. All participants completed pulmonary function and symptom-limited incremental treadmill exercise tests.
Results
Chronic activity-related dyspnea measured by Baseline Dyspnea Index was similarly increased in patients with GOLD 1 (n = 41) and 2 (n = 63) COPD compared with controls (n = 104). Plethysmographic lung volumes were increased and lung diffusing capacity was decreased in both GOLD groups. Peak oxygen uptake and work rate were reduced in both GOLD groups compared with controls (p<0.001). Submaximal ventilation, dyspnea, and leg discomfort ratings were higher for a given work rate in both GOLD groups compared with controls. Resting inspiratory capacity, peak ventilation, and tidal volume were reduced in patients with GOLD 2 COPD compared with patients with GOLD 1 COPD and controls (p<0.001).
Conclusions
Lower exercise tolerance in patients with GOLD 1 and 2 COPD compared with controls was explained by greater mechanical abnormalities, greater ventilatory requirements, and increased subjective discomfort. Lower resting inspiratory capacity in patients with GOLD 2 COPD was associated with greater mechanical constraints and lower peak ventilation compared with patients with GOLD 1 COPD and controls.
Trial Registration
ClinicalTrials.gov: NCT01072396
doi:10.1371/journal.pone.0096574
PMCID: PMC4006871  PMID: 24788342
5.  The Nlrp3 inflammasome regulates acute graft-versus-host disease 
The Journal of Experimental Medicine  2013;210(10):1899-1910.
Conditioning therapies before transplantation induce the release of uric acid, which triggers the NLRP3 inflammasome and IL-1β production contributing to graft-versus-host disease.
The success of allogeneic hematopoietic cell transplantation is limited by acute graft-versus-host disease (GvHD), a severe complication accompanied by high mortality rates. Yet, the molecular mechanisms initiating this disease remain poorly defined. In this study, we show that, after conditioning therapy, intestinal commensal bacteria and the damage-associated molecular pattern uric acid contribute to Nlrp3 inflammasome–mediated IL-1β production and that gastrointestinal decontamination and uric acid depletion reduced GvHD severity. Early blockade of IL-1β or genetic deficiency of the IL-1 receptor in dendritic cells (DCs) and T cells improved survival. The Nlrp3 inflammasome components Nlrp3 and Asc, which are required for pro–IL-1β cleavage, were critical for the full manifestation of GvHD. In transplanted mice, IL-1β originated from multiple intestinal cell compartments and exerted its effects on DCs and T cells, the latter being preferentially skewed toward Th17. Compatible with these mouse data, increased levels of active caspase-1 and IL-1β were found in circulating leukocytes and intestinal GvHD lesions of patients. Thus, the identification of a crucial role for the Nlrp3 inflammasome sheds new light on the pathogenesis of GvHD and opens a potential new avenue for the targeted therapy of this severe complication.
doi:10.1084/jem.20130084
PMCID: PMC3782050  PMID: 23980097
6.  Rhinovirus Exacerbates House-Dust-Mite Induced Lung Disease in Adult Mice 
PLoS ONE  2014;9(3):e92163.
Human rhinovirus is a key viral trigger for asthma exacerbations. To date, murine studies investigating rhinovirus-induced exacerbation of allergic airways disease have employed systemic sensitisation/intranasal challenge with ovalbumin. In this study, we combined human-rhinovirus infection with a clinically relevant mouse model of aero-allergen exposure using house-dust-mite in an attempt to more accurately understand the links between human-rhinovirus infection and exacerbations of asthma. Adult BALB/c mice were intranasally exposed to low-dose house-dust-mite (or vehicle) daily for 10 days. On day 9, mice were inoculated with human-rhinovirus-1B (or UV-inactivated human-rhinovirus-1B). Forty-eight hours after inoculation, we assessed bronchoalveolar cellular inflammation, levels of relevant cytokines/serum antibodies, lung function and responsiveness/sensitivity to methacholine. House-dust-mite exposure did not result in a classical TH2-driven response, but was more representative of noneosinophilic asthma. However, there were significant effects of house-dust-mite exposure on most of the parameters measured including increased cellular inflammation (primarily macrophages and neutrophils), increased total IgE and house-dust-mite-specific IgG1 and increased responsiveness/sensitivity to methacholine. There were limited effects of human-rhinovirus-1B infection alone, and the combination of the two insults resulted in additive increases in neutrophil levels and lung parenchymal responses to methacholine (tissue elastance). We conclude that acute rhinovirus infection exacerbates house-dust-mite-induced lung disease in adult mice. The similarity of our results using the naturally occurring allergen house-dust-mite, to previous studies using ovalbumin, suggests that the exacerbation of allergic airways disease by rhinovirus infection could act via multiple or conserved mechanisms.
doi:10.1371/journal.pone.0092163
PMCID: PMC3954893  PMID: 24632596
7.  Influenza A(H1N1)pdm09 and Cystic Fibrosis Lung Disease: A Systematic Meta-Analysis 
PLoS ONE  2014;9(1):e78583.
Background
To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients.
Methods
An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment.
Results
Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population.
Conclusions
Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
doi:10.1371/journal.pone.0078583
PMCID: PMC3888399  PMID: 24427261
8.  Macrophage Polarisation: an Immunohistochemical Approach for Identifying M1 and M2 Macrophages 
PLoS ONE  2013;8(11):e80908.
Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn’s disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.
doi:10.1371/journal.pone.0080908
PMCID: PMC3829941  PMID: 24260507
9.  Association of Six Well-Characterized Polymorphisms in TNF-α and TNF-β Genes with Sarcoidosis: A Meta-Analysis 
PLoS ONE  2013;8(11):e80150.
Backgrounds
In this study, we aimed to investigate the association of six well-characterized polymorphisms in tumor necrosis factor alpha and beta (TNF-α and TNF-β) genes with the risk for sarcoidosis via a comprehensive meta-analysis.
Methods And Findings
The electronic MEDLINE (Ovid) and PubMed databases covering the period from the earliest possible year to June 2013 were searched. Total 13 qualified articles including 1584 patients with sarcoidosis and 2636 controls were recruited. The data were analyzed by RevMan software, and risk estimates were expressed as odds ratios (ORs) and 95% confidence intervals (95% CIs). Analyses of the full data set failed to identify any significant association of TNF-α gene -307A (OR=1.25; 95% CI: 0.98-1.59), -1031C (OR=0.88; 95% CI: 0.71-1.1), -863A (OR=0.89; 95% CI: 0.72-1.11), -238A (OR=0.97; 95% CI: 0.71-1.32), and -857T (OR=1.14; 95% CI: 0.74-1.77) alleles, but a significant association for TNF-β 252A allele (OR=1.65; 95%CI = 1.33-2.04; P<0.00001). Under a random-effects allelic model, there was marginally significant increased risk of sarcoidosis for -307A allele among Caucasians (OR=1.25; 95% CI: 0.96-1.62; P=0.09) but not among Asians (OR=2.12; 95% CI: 0.31-14.27; P=0.44). There was a low probability of publication bias as reflected by the fail-safe number.
Conclusions
This meta-analysis extended previous findings on the association between the TNF-α and TNF-β genetic polymorphisms and sarcoidosis, by showing that the TNF-β gene A252G polymorphism might be a potential risk factor for the development of sarcoidosis.
doi:10.1371/journal.pone.0080150
PMCID: PMC3820546  PMID: 24244632
10.  Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice 
PLoS ONE  2013;8(10):e77706.
Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG), is mediated by monoacylglycerol lipase (MAGL). The piperidine carbamate, 4-​nitrophenyl- ​4-​(dibenzo[d] [1,3]dioxol-​5-​yl (hydroxy) methyl) piperidine- 1-​carboxylate (JZL184), is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p.)) of JZL184, in a murine model of lipopolysaccharide (LPS) -induced acute lung injury (ALI) 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL) and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) and the AM630 selective CB2 receptor antagonist ([6-​iodo-​2-​methyl-​1-​[2-​(4-​morpholinyl)ethyl]-​1H-​indol-​3-​yl](4-​methoxyphenyl)-​methanone) blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors.
doi:10.1371/journal.pone.0077706
PMCID: PMC3808422  PMID: 24204926
11.  Metformin Attenuates the Exacerbation of the Allergic Eosinophilic Inflammation in High Fat-Diet-Induced Obesity in Mice 
PLoS ONE  2013;8(10):e76786.
A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.
doi:10.1371/journal.pone.0076786
PMCID: PMC3811997  PMID: 24204674
12.  Behavioral Inhibition in Rhesus Monkeys (Macaca mulatta) Is Related to the Airways Response, but Not Immune Measures, Commonly Associated with Asthma 
PLoS ONE  2013;8(8):e71575.
Behavioral inhibition reflects a disposition to react warily to novel situations, and has been associated with atopic diseases such as asthma. Retrospective work established the relationship between behavioral inhibition in rhesus monkeys (Macaca mulatta) and airway hyperresponsiveness, but not atopy, and the suggestion was made that behavioral inhibition might index components of asthma that are not immune-related. In the present study, we prospectively examined the relationship between behavioral inhibition and airway hyperresponsiveness, and whether hormonal and immune measures often associated with asthma were associated with behavioral inhibition and/or airway hyperresponsiveness. In a sample of 49 yearling rhesus monkeys (mean = 1.25 years, n = 24 behaviorally inhibited animals), we measured in vitro cytokine levels (IL-4, IL-10, IL-12, IFN-γ) in response to stimulation, as well as peripheral blood cell percentages, cortisol levels, and percentage of regulatory T-cells (CD3+CD4+CD25+FOXP3+). Airway reactivity was assessed using an inhaled methacholine challenge. Bronchoalveolar lavage was performed and the proportion of immune cells was determined. Behaviorally inhibited monkeys had airway hyperresponsiveness as indicated by the methacholine challenge (p = 0.031), confirming our earlier retrospective result. Airway hyperresponsiveness was also associated with lower lymphocyte percentages in lavage fluid and marginally lower plasma cortisol concentrations. However, none of the tested measures was significantly related to both behavioral inhibition and airway hyperresponsiveness, and so could not mediate their relationship. Airway hyperresponsiveness is common to atopic and non-atopic asthma and behavioral inhibition has been related to altered autonomic activity in other studies. Our results suggest that behavioral inhibition might index an autonomically mediated reactive airway phenotype, and that a variety of stimuli (including inflammation within lung tissue that is not specifically associated with behavioral inhibition) may trigger the airways response.
doi:10.1371/journal.pone.0071575
PMCID: PMC3739724  PMID: 23951195
13.  Smoking in Asthma Is Associated with Elevated Levels of Corticosteroid Resistant Sputum Cytokines—An Exploratory Study 
PLoS ONE  2013;8(8):e71460.
Background
Current cigarette smoking is associated with reduced acute responses to corticosteroids and worse clinical outcomes in stable chronic asthma. The mechanism by which current smoking promotes this altered behavior is currently unclear. Whilst cytokines can induce corticosteroid insensitivity in-vitro, how current and former smoking affects airway cytokine concentrations and their responses to oral corticosteroids in stable chronic asthma is unclear.
Objectives
To examine blood and sputum cytokine concentrations in never, ex and current smokers with asthma before and after oral corticosteroids.
Methods
Exploratory study utilizing two weeks of oral dexamethasone (equivalent to 40 mg/day prednisolone) in 22 current, 21 never and 10 ex-smokers with asthma. Induced sputum supernatant and plasma was obtained before and after oral dexamethasone. 25 cytokines were measured by multiplex microbead system (Invitrogen, UK) on a Luminex platform.
Results
Smokers with asthma had elevated sputum cytokine interleukin (IL) -6, -7, and -12 concentrations compared to never smokers with asthma. Few sputum cytokine concentrations changed in response to dexamethasone IL-17 and IFNα increased in smokers, CCL4 increased in never smokers and CCL5 and CXCL10 reduced in ex-smokers with asthma. Ex-smokers with asthma appeared to have evidence of an ongoing corticosteroid resistant elevation of cytokines despite smoking cessation. Several plasma cytokines were lower in smokers with asthma compared to never smokers with asthma.
Conclusion
Cigarette smoking in asthma is associated with a corticosteroid insensitive increase in multiple airway cytokines. Distinct airway cytokine profiles are present in current smokers and never smokers with asthma and could provide an explanatory mechanism for the altered clinical behavior observed in smokers with asthma.
doi:10.1371/journal.pone.0071460
PMCID: PMC3739804  PMID: 23951170
14.  P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells 
PLoS ONE  2013;8(8):e70577.
Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity.
doi:10.1371/journal.pone.0070577
PMCID: PMC3734297  PMID: 23940597
15.  Lung Macrophages Contribute to House Dust Mite Driven Airway Remodeling via HIF-1α 
PLoS ONE  2013;8(7):e69246.
HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM) increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.
Clinical Relevance
This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to improve asthma pathology.
doi:10.1371/journal.pone.0069246
PMCID: PMC3720585  PMID: 23935964
16.  Reversible Control by Vitamin D of Granulocytes and Bacteria in the Lungs of Mice: An Ovalbumin-Induced Model of Allergic Airway Disease 
PLoS ONE  2013;8(6):e67823.
Vitamin D may be essential for restricting the development and severity of allergic diseases and asthma, but a direct causal link between vitamin D deficiency and asthma has yet to be established. We have developed a ‘low dose’ model of allergic airway disease induced by intraperitoneal injection with ovalbumin (1 µg) and aluminium hydroxide (0.2 mg) in which characteristics of atopic asthma are recapitulated, including airway hyperresponsiveness, antigen-specific immunoglobulin type-E and lung inflammation. We assessed the effects of vitamin D deficiency throughout life (from conception until adulthood) on the severity of ovalbumin-induced allergic airway disease in vitamin D-replete and -deficient BALB/c mice using this model. Vitamin D had protective effects such that deficiency significantly enhanced eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male but not female mice. Vitamin D also suppressed the proliferation and T helper cell type-2 cytokine-secreting capacity of airway-draining lymph node cells from both male and female mice. Supplementation of initially vitamin D-deficient mice with vitamin D for four weeks returned serum 25-hydroxyvitamin D to levels observed in initially vitamin D-replete mice, and also suppressed eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male mice. Using generic 16 S rRNA primers, increased bacterial levels were detected in the lungs of initially vitamin D-deficient male mice, which were also reduced by vitamin D supplementation. These results indicate that vitamin D controls granulocyte levels in the bronchoalveolar lavage fluid in an allergen-sensitive manner, and may contribute towards the severity of asthma in a gender-specific fashion through regulation of respiratory bacteria.
doi:10.1371/journal.pone.0067823
PMCID: PMC3691156  PMID: 23826346
17.  KCa3.1 Channel-Blockade Attenuates Airway Pathophysiology in a Sheep Model of Chronic Asthma 
PLoS ONE  2013;8(6):e66886.
Background
The Ca2+-activated K+ channel KCa3.1 is expressed in several structural and inflammatory airway cell types and is proposed to play an important role in the pathophysiology of asthma. The aim of the current study was to determine whether inhibition of KCa3.1 modifies experimental asthma in sheep.
Methodology and Principal Findings
Atopic sheep were administered either 30 mg/kg Senicapoc (ICA-17073), a selective inhibitor of the KCa3.1-channel, or vehicle alone (0.5% methylcellulose) twice daily (orally). Both groups received fortnightly aerosol challenges with house dust mite allergen for fourteen weeks. A separate sheep group received no allergen challenges or drug treatment. In the vehicle-control group, twelve weeks of allergen challenges resulted in a 60±19% increase in resting airway resistance, and this was completely attenuated by treatment with Senicapoc (0.25±12%; n = 10, P = 0.0147). The vehicle-control group had a peak-early phase increase in lung resistance of 82±21%, and this was reduced by 58% with Senicapoc treatment (24±14%; n = 10, P = 0.0288). Senicapoc-treated sheep also demonstrated reduced airway hyperresponsiveness, requiring a significantly higher dose of carbachol to increase resistance by 100% compared to allergen-challenged vehicle-control sheep (20±5 vs. 52±18 breath-units of carbachol; n = 10, P = 0.0340). Senicapoc also significantly reduced eosinophil numbers in bronchoalveolar lavage taken 48 hours post-allergen challenge, and reduced vascular remodelling.
Conclusions
These findings suggest that KCa3.1-activity contributes to allergen-induced airway responses, inflammation and vascular remodelling in a sheep model of asthma, and that inhibition of KCa3.1 may be an effective strategy for blocking allergen-induced airway inflammation and hyperresponsiveness in humans.
doi:10.1371/journal.pone.0066886
PMCID: PMC3691218  PMID: 23826167
18.  Changes in Airway Histone Deacetylase2 in Smokers and COPD with Inhaled Corticosteroids: A Randomized Controlled Trial 
PLoS ONE  2013;8(5):e64833.
The expression of HDAC2 is reported as reduced in chronic obstructive pulmonary disease (COPD). We assessed HDAC2 expression within the airways of smokers and subjects with COPD and effects of inhaled corticosteroids (ICS), using immuno-histology to contrast with previous molecular methodology.
Endobronchial biopsies (ebb) from current smokers with COPD (COPD-CS; n = 15), ex-smokers with COPD (COPD-ES; n = 17), smokers with normal lung function (NS; n = 16) and normal controls (NC; n = 9) were immunostained for HDAC2. A double-blinded, randomized, placebo-controlled 6 months intervention study assessed effects of ICS on HDAC2 in 34 COPD subjects.
There was no difference in epithelial HDAC2 staining in all groups. There was a significant reduction in total cell numbers in the lamina propria (LP) in COPD-CS and NS (p<0.05). LP cellularity correlated inversely with smoking history in COPD-CS (R = −0.8, p<0.003). HDAC2 expression increased markedly in NS (p<0.001); in contrast COPD-CS was associated with suppressed signal (p<0.03), while normal in COPD-ES. ICS did not affect HDAC2 cell staining.
Our findings suggest that airway HDAC2 expression is increased in the LP by smoking itself, but is reduced in COPD. Ex-smokers have normalised HDAC2 cell expression, but ICS had no effect. The paper emphasise the pit-falls of relying on molecular data alone to define airway changes.
Clinical Trial Registration Information:
Name of registry
The Australian New Zealand Clinical Trials Registry (ANZCTR)
Registry number
ACTRN12612001111864
doi:10.1371/journal.pone.0064833
PMCID: PMC3661479  PMID: 23717666
19.  Electrocardiographic Changes Associated with Smoking and Smoking Cessation: Outcomes from a Randomized Controlled Trial 
PLoS ONE  2013;8(4):e62311.
Introduction
Cardiovascular disease (CVD) can be detected and quantified by analysis of the electrocardiogram (ECG); however the effects of smoking and smoking cessation on the ECG have not been characterized.
Methods
Standard 12-lead ECGs were performed at baseline and 3 years after subjects enrolled in a prospective, randomized, placebo-controlled clinical trial of smoking cessation pharmacotherapies. ECGs were interpreted using the Minnesota Code ECG Classification. The effects of (i) smoking burden on the prevalence of ECG findings at baseline, and (ii) smoking and smoking cessation on ECG changes after 3 years were investigated by multivariable and multinomial regression analyses.
Results
At baseline, 532 smokers were (mean [SD]) 43.3 (11.5) years old, smoked 20.6 (7.9) cigarettes/day, with a smoking burden of 26.7 (18.6) pack-years. Major and minor ECG criteria were identified in 87 (16.4%) and 131 (24.6%) of subjects, respectively. After adjusting for demographic data and known CVD risk factors, higher pack-years was associated with major ECG abnormalities (p = 0.02), but current cigarettes/day (p = 0.23) was not. After 3 years, 42.9% of subjects were abstinent from smoking. New major and minor ECG criteria were observed in 7.2% and 15.6% of subjects respectively, but in similar numbers of abstinent subjects and continuing smokers (p>0.2 for both). Continuing smokers showed significant reduction in current smoking (–8.4 [8.8] cigarettes/day, p<0.001) compared to baseline.
Conclusions
In conclusion, major ECG abnormalities are independently associated with lifetime smoking burden. After 3 years, smoking cessation was not associated with a decrease in ECG abnormalities, although cigarettes smoked/day decreased among continuing smokers.
doi:10.1371/journal.pone.0062311
PMCID: PMC3633867  PMID: 23626800
20.  Role of Alveolar β2-Adrenergic Receptors on Lung Fluid Clearance and Exercise Ventilation in Healthy Humans 
PLoS ONE  2013;8(4):e61877.
Background
In experimental conditions alveolar fluid clearance is controlled by alveolar β2-adrenergic receptors. We hypothesized that if this occurs in humans, then non-selective β-blockers should reduce the membrane diffusing capacity (DM), an index of lung interstitial fluid homeostasis. Moreover, we wondered whether this effect is potentiated by saline solution infusion, an intervention expected to cause interstitial lung edema. Since fluid retention within the lungs might trigger excessive ventilation during exercise, we also hypothesized that after the β2-blockade ventilation increased in excess to CO2 output and this was further enhanced by interstitial edema.
Methods and Results
22 healthy males took part in the study. On day 1, spirometry, lung diffusion for carbon monoxide (DLCO) including its subcomponents DM and capillary volume (VCap), and cardiopulmonary exercise test were performed. On day 2, these tests were repeated after rapid 25 ml/kg saline infusion. Then, in random order 11 subjects were assigned to oral treatment with Carvedilol (CARV) and 11 to Bisoprolol (BISOPR). When heart rate fell at least by 10 beats·min−1, the tests were repeated before (day 3) and after saline infusion (day 4). CARV but not BISOPR, decreased DM (−13±7%, p = 0.001) and increased VCap (+20±22%, p = 0.016) and VE/VCO2 slope (+12±8%, p<0.01). These changes further increased after saline: −18±13% for DM (p<0.01), +44±28% for VCap (p<0.001), and +20±10% for VE/VCO2 slope (p<0.001).
Conclusions
These findings support the hypothesis that in humans in vivo the β2-alveolar receptors contribute to control alveolar fluid clearance and that interstitial lung fluid may trigger exercise hyperventilation.
doi:10.1371/journal.pone.0061877
PMCID: PMC3627811  PMID: 23613962
21.  Modified Foxp3 mRNA protects against asthma through an IL-10–dependent mechanism  
The Journal of Clinical Investigation  2013;123(3):1216-1228.
Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tissue inflammation, airway hyperresponsiveness, and goblet cell metaplasia in 2 asthma models. This protection was conferred following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventive and a therapeutic agent. Mechanistically, FOXP3 induction controlled Th2 and Th17 inflammation by regulating innate immune cell recruitment through an IL-10–dependent pathway. The protective effects of FOXP3 could be reversed by depletion of IL-10 or administration of recombinant IL-17A or IL-23. Delivery of Foxp3 mRNA to sites of inflammation may offer a novel, safe therapeutic tool for the treatment of allergic asthma and other diseases driven by an imbalance in helper T cell responses.
doi:10.1172/JCI65351
PMCID: PMC3582134  PMID: 23391720
22.  Modification of Hemodynamic and Immune Responses to Exposure with a Weak Antigen by the Expression of a Hypomorphic BMPR2 Gene 
PLoS ONE  2013;8(1):e55180.
Background
Hypomorphic mutations in the bone morphogenic protein receptor (BMPR2) confer a much greater risk for developing pulmonary arterial hypertension (PAH). However, not all carriers of a mutation in the BMPR2 gene suffer from PAH. We have previously shown that prolonged T helper 2 (Th2) responses in the lungs to a mild antigen delivered via the airways induce severe pulmonary arterial remodeling, but no pulmonary hypertension. The current studies were designed to test the idea that Th2 responses to a mild antigen together with the expression of a hypomorphic BMPR2 gene would trigger pulmonary hypertension.
Methodology/Principal Findings
Mice that expressed a hypomorphic BMPR2 transgene (transgene-positive) and transgene-negative mice were either exposed to saline, or primed and exposed to a mild antigen (Ovalbumin) over a prolonged period of time. Only transgene-positive but not transgene-negative mice exposed to antigen developed significantly increased right ventricular systolic pressures, while both groups showed pulmonary artery remodeling with severe muscularization and airway inflammation to a similar degree. Antigen exposure resulted in a smaller increase in the percentage of Interleukin (IL)-13 positive T cells in the lymph nodes, and in a smaller increase in resistin-like-molecule (RELM)α expression and a decreased ratio of expression of IL-33 relative to its receptor (IL-1-receptor-like 1, IL1RL1-ST2) in the right ventricles of transgene-positive mice compared to transgene-negative animals. Furthermore, only antigen-challenged transgene-positive mice showed a significant increase in Interferon (IFN)γ positive T cells over saline-exposed controls.
Conclusions/Significance
Our study suggests that exposure with a mild Th2 antigen can trigger pulmonary hypertension on the background of the expression of a hypomorphic BMPR2 gene and that conversely, the expression of the hypomorphic BMPR2 gene can alter the immune response to a mild, inhaled antigen.
doi:10.1371/journal.pone.0055180
PMCID: PMC3558423  PMID: 23383100
23.  IL-18 Induces Airway Hyperresponsiveness and Pulmonary Inflammation via CD4+ T Cell and IL-13 
PLoS ONE  2013;8(1):e54623.
IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases including pulmonary infection, pulmonary fibrosis, lung injury and chronic obstructive pulmonary disease (COPD). However, it is unknown whether IL-18 plays any role in the pathogenesis of asthma. We hypothesized that overexpression of mature IL-18 protein in the lungs may exacerbate disease activities of asthma. We established lung-specific IL-18 transgenic mice on a Balb/c genetic background. Female mice sensitized– and challenged– with antigen (ovalbumin) were used as a mouse asthma model. Pulmonary inflammation and emphysema were not observed in the lungs of naïve transgenic mice. However, airway hyperresponsiveness and airway inflammatory cells accompanied with CD4+ T cells, CD8+ T cells, eosinophils, neutrophils, and macrophages were significantly increased in ovalbumin-sensitized and challenged transgenic mice, as compared to wild type Balb/c mice. We also demonstrate that IL-18 induces IFN-γ, IL-13, and eotaxin in the lungs of ovalbumin-sensitized and challenged transgenic mice along with an increase in IL-13 producing CD4+ T cells. Treatment with anti-CD4 monoclonal antibody or deletion of the IL-13 gene improves ovalbumin-induced airway hyperresponsiveness and reduces airway inflammatory cells in transgenic mice. Overexpressing the IL-18 protein in the lungs induces type 1 and type 2 cytokines and airway inflammation, and results in increasing airway hyperresponsiveness via CD4+ T cells and IL-13 in asthma.
doi:10.1371/journal.pone.0054623
PMCID: PMC3558507  PMID: 23382928
24.  Safety of and Cellular Response to Segmental Bronchoprovocation in Allergic Asthma 
PLoS ONE  2013;8(1):e51963.
Rationale
Despite its incorporation into research studies, the safety aspects of segmental allergen bronchoprovocation and differences in cellular response among different allergens have received limited consideration.
Methods
We performed 87 segmental challenges in 77 allergic asthma subjects. Allergen dose was based on each subject’s response to whole lung allergen challenge. Bronchoalveolar lavage was performed at 0 and 48 hours. Safety indicators included spirometry, oxygen saturation, heart rate, and symptoms.
Results
Among subjects challenged with ragweed, cat dander, or house dust mite, there were no differences in safety indicators. Subjects demonstrated a modest oxygen desaturation and tachycardia during the procedure that returned to normal prior to discharge. We observed a modest reduction in forced vital capacity and forced expiratory volume in one second following bronchoscopy. The most common symptoms following the procedure were cough, sore throat and fatigue. Total bronchoalveolar lavage fluid cell numbers increased from 13±4 to 106±108×104 per milliliter and eosinophils increased from 1±2 to 44±20 percent, with no significant differences among the three allergens.
Conclusions
In mild allergic asthma, segmental allergen bronchoprovocation, using individualized doses of aeroallergens, was safe and yielded similar cellular responses.
doi:10.1371/journal.pone.0051963
PMCID: PMC3547018  PMID: 23341886
25.  Dual Function of Novel Pollen Coat (Surface) Proteins: IgE-binding Capacity and Proteolytic Activity Disrupting the Airway Epithelial Barrier 
PLoS ONE  2013;8(1):e53337.
Background
The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., “de-fatted”), and, as a result, their involvement in allergy has not been explored.
Methodology/Principal Findings
Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM) to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass) pollen (BGP) by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP) and endoxylanase (EXY). The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity.
Conclusions/Significance
Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic responses is warranted and could potentially lead to the development of improved diagnostic and therapeutic tools.
doi:10.1371/journal.pone.0053337
PMCID: PMC3538775  PMID: 23308195

Results 1-25 (64)