PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Ratio of Intratumoral Macrophage Phenotypes Is a Prognostic Factor in Epithelioid Malignant Pleural Mesothelioma 
PLoS ONE  2014;9(9):e106742.
Hypothesis
The tumor micro-environment and especially the different macrophage phenotypes appear to be of great influence on the behavior of multiple tumor types. M1 skewed macrophages possess anti-tumoral capacities, while the M2 polarized macrophages have pro-tumoral capacities. We analyzed if the macrophage count and the M2 to total macrophage ratio is a discriminative marker for outcome after surgery in malignant pleural mesothelioma (MPM) and studied the prognostic value of these immunological cells.
Methods
8 MPM patients who received induction chemotherapy and surgical treatment were matched on age, sex, tumor histology, TNM stage and EORTC score with 8 patients who received chemotherapy only. CD8 positive T-cells and the total macrophage count, using the CD68 pan-macrophage marker, and CD163 positive M2 macrophage count were determined in tumor specimens prior to treatment.
Results
The number of CD68 and CD163 cells was comparable between the surgery and the non-surgery group, and was not related to overall survival (OS) in both the surgery and non-surgery group. However, the CD163/CD68 ratio did correlate with OS in both in the total patient group (Pearson r −0.72, p<0.05). No correlation between the number of CD8 cells and prognosis was found.
Conclusions
The total number of macrophages in tumor tissue did not correlate with OS in both groups, however, the CD163/CD68 ratio correlates with OS in the total patient group. Our data revealed that the CD163/CD68 ratio is a potential prognostic marker in epithelioid mesothelioma patients independent of treatment but cannot be used as a predictive marker for outcome after surgery.
doi:10.1371/journal.pone.0106742
PMCID: PMC4156398  PMID: 25192022
2.  Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma 
Journal of Extracellular Vesicles  2013;2:10.3402/jev.v2i0.22492.
Background
In 2001, it was postulated that tumour-derived exosomes could be a potent source of tumour-associated antigens (TAA). Since then, much knowledge is gained on their role in tumorigenesis but only very recently tumour-derived exosomes were used in dendritic cell (DC)-based immunotherapy. For this, DCs were cultured ex-vivo and loaded with exosomes derived from immunogenic tumours such as melanoma or glioma and re-administrated to induce anti-tumour responses in primary and metastatic tumour mouse models. In contrast, malignant mesothelioma (MM) is a non-immunogenic tumour and because only a few mesothelioma-specific TAA are known to date, we investigated whether mesothelioma-derived exosomes could be used as antigen source in DC-based immunotherapy.
Methods
Mouse MM AB1 cells were used to generate tumour lysate and tumour-derived exosomes. Tumour lysate was generated by 5 cycles of freeze–thawing followed by sonication of AB1 cells. Tumour exosomes were collected from the AB1 cell culture supernatant and followed a stepwise ultracentrifugation. Protein quantification and electron microscopy were performed to determine the protein amount and to characterise their morphology. To test whether MM derived exosomes are immunogenic and able to stimulate an anti-tumoral response, BALB/c mice were injected with a lethal dose of AB1 tumour cells at day 0, followed by intraperitoneal injection of a single dose of DCs loaded with tumour exosomes, DCs loaded with tumour lysate, or phosphate buffered saline (PBS), at day 7.
Results
Mice which received tumour exosome-loaded DC immunotherapy had an increased median and overall survival compared to mice which received tumour lysate-loaded DC or PBS.
Conclusion
In this study, we showed that DC immunotherapy loaded with tumour exosomes derived from non-immunogenic tumours improved survival of tumour bearing mice.
doi:10.3402/jev.v2i0.22492
PMCID: PMC3823268  PMID: 24223258
mesothelioma; dendritic cell(s); immunotherapy; tumour antigens; exosomes
3.  Immunological profiling as a means to invigorate personalized cancer therapy 
Oncoimmunology  2013;2(8):e25236.
Immunotherapy has taken off but has not yet reached its cruising altitude and is certainly far from its final destination. Identifying the unique immunological profile of individual cancer patients will provide critical clues for the design of optimal strategies that rectify tumor-induced immune imbalances.
doi:10.4161/onci.25236
PMCID: PMC3805634  PMID: 24167762
immune profile; personalized; cancer; treatment; immunotherapy
4.  Improving lung cancer survival; time to move on 
Background
During the past decades, numerous efforts have been made to decrease the death rate among lung cancer patients. Nonetheless, the improvement in long-term survival has been limited and lung cancer is still a devastating disease.
Discussion
With this article we would like to point out that survival of lung cancer could be strongly improved by controlling two pivotal prognostic factors: stage and treatment. This is corresponding with recent reports that show a decrease in lung cancer mortality by screening programs. In addition, modulation of the patient’s immune system by immunotherapy either as monotherapy or combined with conventional cancer treatments offers the prospect of tailoring treatments much more precisely and has also been shown to lead to a better response to treatment and overall survival of non-small cell lung cancer patients.
Summary
Since only small improvements in survival can be expected in advanced disease with the use of conventional therapies, more research should be focused on lung cancer screening programs and patient tailored immunotherapy with or without conventional therapies. If these approaches are clinically combined in a standard multidisciplinary policy we might be able to advance the survival of patients with lung cancer.
doi:10.1186/1471-2466-12-77
PMCID: PMC3528634  PMID: 23234250
Lung cancer; Survival; Lung cancer screening; Immunotherapy
5.  Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment 
BMC Cancer  2012;12:580.
Cancer research has devoted most of its energy over the past decades on unraveling the control mechanisms within tumor cells that govern its behavior. From this we know that the onset of cancer is the result of cumulative genetic mutations and epigenetic alterations in tumor cells leading to an unregulated cell cycle, unlimited replicative potential and the possibility for tissue invasion and metastasis. Until recently it was often thought that tumors are more or less undetected or tolerated by the patient’s immune system causing the neoplastic cells to divide and spread without resistance. However, it is without any doubt that the tumor environment contains a wide variety of recruited host immune cells. These tumor infiltrating immune cells influence anti-tumor responses in opposing ways and emerges as a critical regulator of tumor growth. Here we provide a summary of the relevant immunological cell types and their complex and dynamic roles within an established tumor microenvironment. For this, we focus on both the systemic compartment as well as the local presence within the tumor microenvironment of late-stage non-small cell lung cancer (NSCLC), admitting that this multifaceted cellular composition will be different from earlier stages of the disease, between NSCLC patients. Understanding the paradoxical role that the immune system plays in cancer and increasing options for their modulation may alter the odds in favor of a more effective anti-tumor immune response. We predict that the future standard of care of lung cancer will involve patient-tailor-made combination therapies that associate (traditional) chemotherapeutic drugs and biologicals with immune modulating agents and in this way complement the therapeutic armamentarium for this disease.
doi:10.1186/1471-2407-12-580
PMCID: PMC3533940  PMID: 23217146
Lung cancer; Tumor microenvironment; Immune system; Personalized medicine; Cancer immunology
6.  TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets 
Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.
doi:10.1155/2012/586314
PMCID: PMC3287115  PMID: 22400038
7.  COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function 
BMC Cancer  2010;10:464.
Background
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies.
Methods
MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy.
Results
We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy.
Conclusions
We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity.
doi:10.1186/1471-2407-10-464
PMCID: PMC2939552  PMID: 20804550
8.  Low-Dose Cyclophosphamide Synergizes with Dendritic Cell-Based Immunotherapy in Antitumor Activity 
Clinical immunotherapy trials like dendritic cell-based vaccinations are hampered by the tumor's offensive repertoire that suppresses the incoming effector cells. Regulatory T cells are instrumental in suppressing the function of cytotoxic T cells. We studied the effect of low-dose cyclophosphamide on the suppressive function of regulatory T cells and investigated if the success rate of dendritic cell immunotherapy could be improved. For this, mesothelioma tumor-bearing mice were treated with dendritic cell-based immunotherapy alone or in combination with low-dose of cyclophosphamide. Proportions of regulatory T cells and the cytotoxic T cell functions at different stages of disease were analyzed. We found that low-dose cyclophosphamide induced beneficial immunomodulatory effects by preventing the induction of Tregs, and as a consequence, cytotoxic T cell function was no longer affected. Addition of cyclophosphamide improved immunotherapy leading to an increased median and overall survival. Future studies are needed to address the usefulness of this combination treatment for mesothelioma patients.
doi:10.1155/2010/798467
PMCID: PMC2874992  PMID: 20508851

Results 1-8 (8)