PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF 
The Journal of Experimental Medicine  2013;210(10):1977-1992.
Alveolar macrophages differentiate from fetal monocytes in a GM-CSF–dependent fashion and colonize the alveolar space within a few days after birth.
Tissue-resident macrophages can develop from circulating adult monocytes or from primitive yolk sac–derived macrophages. The precise ontogeny of alveolar macrophages (AMFs) is unknown. By performing BrdU labeling and parabiosis experiments in adult mice, we found that circulating monocytes contributed minimally to the steady-state AMF pool. Mature AMFs were undetectable before birth and only fully colonized the alveolar space by 3 d after birth. Before birth, F4/80hiCD11blo primitive macrophages and Ly6ChiCD11bhi fetal monocytes sequentially colonized the developing lung around E12.5 and E16.5, respectively. The first signs of AMF differentiation appeared around the saccular stage of lung development (E18.5). Adoptive transfer identified fetal monocytes, and not primitive macrophages, as the main precursors of AMFs. Fetal monocytes transferred to the lung of neonatal mice acquired an AMF phenotype via defined developmental stages over the course of one week, and persisted for at least three months. Early AMF commitment from fetal monocytes was absent in GM-CSF–deficient mice, whereas short-term perinatal intrapulmonary GM-CSF therapy rescued AMF development for weeks, although the resulting AMFs displayed an immature phenotype. This demonstrates that tissue-resident macrophages can also develop from fetal monocytes that adopt a stable phenotype shortly after birth in response to instructive cytokines, and then self-maintain throughout life.
doi:10.1084/jem.20131199
PMCID: PMC3782041  PMID: 24043763
2.  A20-Deficient Mast Cells Exacerbate Inflammatory Responses In Vivo 
PLoS Biology  2014;12(1):e1001762.
Mast cells, best known as effector cells in pathogenic immunoglobulin-mediated responses, can sense a variety of “danger” signals; if manipulated to enhance their resulting inflammatory responses, they also exacerbate inflammatory diseases such as arthritis and lung inflammation.
Mast cells are implicated in the pathogenesis of inflammatory and autoimmune diseases. However, this notion based on studies in mast cell-deficient mice is controversial. We therefore established an in vivo model for hyperactive mast cells by specifically ablating the NF-κB negative feedback regulator A20. While A20 deficiency did not affect mast cell degranulation, it resulted in amplified pro-inflammatory responses downstream of IgE/FcεRI, TLRs, IL-1R, and IL-33R. As a consequence house dust mite- and IL-33-driven lung inflammation, late phase cutaneous anaphylaxis, and collagen-induced arthritis were aggravated, in contrast to experimental autoimmune encephalomyelitis and immediate anaphylaxis. Our results provide in vivo evidence that hyperactive mast cells can exacerbate inflammatory disorders and define diseases that might benefit from therapeutic intervention with mast cell function.
Author Summary
Mast cells mediate allergic and anaphylactic immune reactions. They are also equipped with innate pattern recognition, cytokine, and alarmin receptors, which induce inflammatory responses. Correlative studies in human patients hinted at roles for mast cells in autoimmune and inflammatory diseases. However, studies using mast cell-deficient mice have yielded contradictory results in this context. In this study we determined that A20, the negative feedback regulator, restricts inflammation downstream of the mast cell antigen (allergen) receptor module, innate pattern recognition receptors, and the alarmin receptor IL-33R. By mast cell–specific ablation of A20 we established a mouse model for exaggerated inflammatory but normal anaphylactic mast cell signaling. With these mice we evaluated the impact of increased mast cell-mediated inflammation under experimental conditions aimed at mimicking several inflammatory human diseases. Our results demonstrated that the lack of A20 from mast cells exacerbated disease in mouse models for rheumatoid arthritis and innate forms of asthma, but did not impact disease progression in a mouse model for multiple sclerosis. Our data provide direct evidence that enhanced inflammatory mast cell responses can contribute to disease pathology and do so via sensing and amplifying local inflammatory reactions driven by “danger” stimuli and/or tissue damage that leads to the release of alarmins.
doi:10.1371/journal.pbio.1001762
PMCID: PMC3891641  PMID: 24453940
3.  The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β 
PLoS ONE  2013;8(3):e59822.
It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.
doi:10.1371/journal.pone.0059822
PMCID: PMC3603891  PMID: 23527272
4.  Interleukin-1α controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33 
The Journal of Experimental Medicine  2012;209(8):1505-1517.
IL-1α promotes a cascade of cytokine production from epithelial cells culminating in Th2 immunity to house dust mite allergens.
House dust mite (HDM) is one of the most common allergens worldwide. In this study, we have addressed the involvement of IL-1 in the interaction between HDM and the innate immune response driven by lung epithelial cells (ECs) and dendritic cells (DCs) that leads to asthma. Mice lacking IL-1R on radioresistant cells, but not hematopoietic cells, failed to mount a Th2 immune response and did not develop asthma to HDM. Experiments performed in vivo and in isolated air–liquid interface cultures of bronchial ECs showed that TLR4 signals induced the release of IL-1α, which then acted in an autocrine manner to trigger the release of DC-attracting chemokines, GM-CSF, and IL-33. Consequently, allergic sensitization to HDM was abolished in vivo when IL-1α, GM-CSF, or IL-33 was neutralized. Thymic stromal lymphopoietin (TSLP) became important only when high doses of allergen were administered. These findings put IL-1α upstream in the cytokine cascade leading to epithelial and DC activation in response to inhaled HDM allergen.
doi:10.1084/jem.20112691
PMCID: PMC3409497  PMID: 22802353
5.  Crosstalk between Innate and Adaptive Cells on Allergic Process 
Journal of Allergy  2012;2012:720568.
doi:10.1155/2012/720568
PMCID: PMC3541639  PMID: 23326278
6.  Evidence for local dendritic cell activation in pulmonary sarcoidosis 
Respiratory Research  2012;13(1):33.
Background
Sarcoidosis is a granulomatous disease characterized by a seemingly exaggerated immune response against a difficult to discern antigen. Dendritic cells (DCs) are pivotal antigen presenting cells thought to play an important role in the pathogenesis. Paradoxically, decreased DC immune reactivity was reported in blood samples from pulmonary sarcoidosis patients. However, functional data on lung DCs in sarcoidosis are lacking. We hypothesized that at the site of disease DCs are mature, immunocompetent and involved in granuloma formation.
Methods
We analyzed myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in broncho-alveolar lavage (BAL) and blood from newly diagnosed, untreated pulmonary sarcoidosis patients and healthy controls using 9-color flowcytometry. DCs, isolated from BAL using flowcytometric sorting (mDCs) or cultured from monocytes (mo-DCs), were functionally assessed in a mixed leukocyte reaction with naïve allogeneic CD4+ T cells. Using Immunohistochemistry, location and activation status of CD11c+DCs was assessed in mucosal airway biopsies.
Results
mDCs in BAL, but not in blood, from sarcoidosis patients were increased in number when compared with mDCs from healthy controls. mDCs purified from BAL of sarcoidosis patients induced T cell proliferation and differentiation and did not show diminished immune reactivity. Mo-DCs from patients induced increased TNFα release in co-cultures with naïve allogeneic CD4+ T cells. Finally, immunohistochemical analyses revealed increased numbers of mature CD86+ DCs in granuloma-containing airway mucosal biopsies from sarcoidosis patients.
Conclusion
Taken together, these finding implicate increased local DC activation in granuloma formation or maintenance in pulmonary sarcoidosis.
doi:10.1186/1465-9921-13-33
PMCID: PMC3352267  PMID: 22513006
Sarcoidosis; Dendritic cells; Bronchoalveolar lavage; Granuloma; TNFα
7.  Cellular networks controlling Th2 polarization in allergy and immunity 
In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction.
doi:10.3410/B4-6
PMCID: PMC3292286  PMID: 22403589
8.  TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways 
Respiratory Research  2011;12(1):125.
Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin.
Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.
doi:10.1186/1465-9921-12-125
PMCID: PMC3189122  PMID: 21943186
Airway diseases; dendritic cells; epithelial cell; pulmonary stromal cells; TLR4
9.  Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen 
The Journal of Experimental Medicine  2010;207(10):2097-2111.
It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen.
doi:10.1084/jem.20101563
PMCID: PMC2947072  PMID: 20819925
10.  The lung vascular filter as a site of immune induction for T cell responses to large embolic antigen 
The Journal of Experimental Medicine  2009;206(12):2823-2835.
The bloodstream is an important route of dissemination of invading pathogens. Most of the small bloodborne pathogens, like bacteria or viruses, are filtered by the spleen or liver sinusoids and presented to the immune system by dendritic cells (DCs) that probe these filters for the presence of foreign antigen (Ag). However, larger pathogens, like helminths or infectious emboli, that exceed 20 µm are mostly trapped in the vasculature of the lung. To determine if Ag trapped here can be presented to cells of the immune system, we used a model of venous embolism of large particulate Ag (in the form of ovalbumin [OVA]-coated Sepharose beads) in the lung vascular bed. We found that large Ags were presented and cross-presented to CD4 and CD8 T cells in the mediastinal lymph nodes (LNs) but not in the spleen or liver-draining LNs. Dividing T cells returned to the lungs, and a short-lived infiltrate consisting of T cells and DCs formed around trapped Ag. This infiltrate was increased when the Toll-like receptor 4 was stimulated and full DC maturation was induced by CD40 triggering. Under these conditions, OVA-specific cytotoxic T lymphocyte responses, as well as humoral immunity, were induced. The T cell response to embolic Ag was severely reduced in mice depleted of CD11chi cells or Ly6C/G+ cells but restored upon adoptive transfer of Ly6Chi monocytes. We conclude that the lung vascular filter represents a largely unexplored site of immune induction that traps large bloodborne Ags for presentation by monocyte-derived DCs.
doi:10.1084/jem.20082401
PMCID: PMC2806611  PMID: 19858325
11.  House dust mite allergen induces asthma via TLR4 triggering of airway structural cells 
Nature medicine  2009;15(4):410-416.
Barrier epithelial cells and airway dendritic cells (DC) make up the first line of defence against inhaled substances like house dust mite (HDM) allergen and endotoxin. We hypothesized that these cells need to communicate to cause allergic disease. Using irradiated chimeric mice, we demonstrate that TLR4 expression on radioresistant lung structural cells is required and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony stimulating factor, interleukin-25 and IL-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs.
doi:10.1038/nm.1946
PMCID: PMC2789255  PMID: 19330007
12.  Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells 
Alum (aluminum hydroxide) is the most widely used adjuvant in human vaccines, but the mechanism of its adjuvanticity remains unknown. In vitro studies showed no stimulatory effects on dendritic cells (DCs). In the absence of adjuvant, Ag was taken up by lymph node (LN)–resident DCs that acquired soluble Ag via afferent lymphatics, whereas after injection of alum, Ag was taken up, processed, and presented by inflammatory monocytes that migrated from the peritoneum, thus becoming inflammatory DCs that induced a persistent Th2 response. The enhancing effects of alum on both cellular and humoral immunity were completely abolished when CD11c+ monocytes and DCs were conditionally depleted during immunization. Mechanistically, DC-driven responses were abolished in MyD88-deficient mice and after uricase treatment, implying the induction of uric acid. These findings suggest that alum adjuvant is immunogenic by exploiting “nature's adjuvant,” the inflammatory DC through induction of the endogenous danger signal uric acid.
doi:10.1084/jem.20071087
PMCID: PMC2292225  PMID: 18362170
13.  Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells 
Prostaglandins (PGs) can enhance or suppress inflammation by acting on different receptors expressed by hematopoietic and nonhematopoietic cells. Prostaglandin D2 binds to the D prostanoid (DP)1 and DP2 receptor and is seen as a critical mediator of asthma causing vasodilation, bronchoconstriction, and inflammatory cell influx. Here we show that inhalation of a selective DP1 agonist suppresses the cardinal features of asthma by targeting the function of lung dendritic cells (DCs). In mice treated with DP1 agonist or receiving DP1 agonist-treated DCs, there was an increase in Foxp3+ CD4+ regulatory T cells that suppressed inflammation in an interleukin 10–dependent way. These effects of DP1 agonist on DCs were mediated by cyclic AMP–dependent protein kinase A. We furthermore show that activation of DP1 by an endogenous ligand inhibits airway inflammation as chimeric mice with selective hematopoietic loss of DP1 had strongly enhanced airway inflammation and antigen-pulsed DCs lacking DP1 were better at inducing airway T helper 2 responses in the lung. Triggering DP1 on DCs is an important mechanism to induce regulatory T cells and to control the extent of airway inflammation. This pathway could be exploited to design novel treatments for asthma.
doi:10.1084/jem.20061196
PMCID: PMC2118726  PMID: 17283205
14.  Inhaled iloprost suppresses the cardinal features of asthma via inhibition of airway dendritic cell function 
Journal of Clinical Investigation  2007;117(2):464-472.
Inhalation of iloprost, a stable prostacyclin (PGI2) analog, is a well-accepted and safe treatment for pulmonary arterial hypertension. Although iloprost mainly acts as a vasodilator by binding to the I prostanoid (IP) receptor, recent evidence suggests that signaling via this receptor also has antiinflammatory effects through unclear mechanisms. Here we show in a murine model of asthma that iloprost inhalation suppressed the cardinal features of asthma when given during the priming or challenge phase. As a mechanism of action, iloprost interfered with the function of lung myeloid DCs, critical antigen-presenting cells of the airways. Iloprost treatment inhibited the maturation and migration of lung DCs to the mediastinal LNs, thereby abolishing the induction of an allergen-specific Th2 response in these nodes. The effect of iloprost was DC autonomous, as iloprost-treated DCs no longer induced Th2 differentiation from naive T cells or boosted effector cytokine production in primed Th2 cells. These data should pave the way for a clinical effectiveness study using inhaled iloprost for the treatment of asthma.
doi:10.1172/JCI28949
PMCID: PMC1783814  PMID: 17273558
15.  Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function 
Journal of Clinical Investigation  2006;116(11):2935-2944.
Airway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1–phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug. Here we show in a murine asthma model that local application of FTY720 via inhalation prior to or during ongoing allergen challenge suppresses Th2-dependent eosinophilic airway inflammation and bronchial hyperresponsiveness without causing lymphopenia and T cell retention in the lymph nodes. Effectiveness of local treatment was achieved by inhibition of the migration of lung DCs to the mediastinal lymph nodes, which in turn inhibited the formation of allergen-specific Th2 cells in lymph nodes. Also, FTY720-treated DCs were intrinsically less potent in activating naive and effector Th2 cells due to a reduced capacity to form stable interactions with T cells and thus to form an immunological synapse. These data support the concept that targeting the function of airway DCs with locally acting drugs is a powerful new strategy in the treatment of asthma.
doi:10.1172/JCI28295
PMCID: PMC1626118  PMID: 17080194
16.  Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen 
Tolerance is the usual outcome of inhalation of harmless antigen, yet T helper (Th) type 2 cell sensitization to inhaled allergens induced by dendritic cells (DCs) is common in atopic asthma. Here, we show that both myeloid (m) and plasmacytoid (p) DCs take up inhaled antigen in the lung and present it in an immunogenic or tolerogenic form to draining node T cells. Strikingly, depletion of pDCs during inhalation of normally inert antigen led to immunoglobulin E sensitization, airway eosinophilia, goblet cell hyperplasia, and Th2 cell cytokine production, cardinal features of asthma. Furthermore, adoptive transfer of pDCs before sensitization prevented disease in a mouse asthma model. On a functional level, pDCs did not induce T cell division but suppressed the generation of effector T cells induced by mDCs. These studies show that pDCs provide intrinsic protection against inflammatory responses to harmless antigen. Therapies exploiting pDC function might be clinically effective in preventing the development of asthma.
doi:10.1084/jem.20040035
PMCID: PMC2213319  PMID: 15238608
asthma; plasmacytoid dendritic cells; tolerance; mucosal immunity; regulatory T cell

Results 1-16 (16)