Search tips
Search criteria

Results 1-25 (38)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
2.  Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1 
Nature Communications  2015;6:7146.
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.
Ankylosing spondylitis is a common, highly inheritable inflammatory arthritis with poorly understood biology. Here Brown, Cortes and colleagues use fine mapping of the major histocompatibility complex and identify novel associations, and identify other HLA alleles that like HLA-B27 interact with ERAP1 variants to influence disease risk.
PMCID: PMC4443427  PMID: 25994336
3.  Heterogeneity of Synovial Molecular Patterns in Patients with Arthritis 
PLoS ONE  2015;10(4):e0122104.
Early diagnosis of rheumatoid arthritis (RA) is an unmet medical need in the field of rheumatology. Previously, we performed high-density transcriptomic studies on synovial biopsies from patients with arthritis, and found that synovial gene expression profiles were significantly different according to the underlying disorder. Here, we wanted to further explore the consistency of the gene expression signals in synovial biopsies of patients with arthritis, using low-density platforms.
Low-density assays (cDNA microarray and microfluidics qPCR) were designed, based on the results of the high-density microarray data. Knee synovial biopsies were obtained from patients with RA, spondyloarthropathies (SA) or osteoarthritis (OA) (n = 39), and also from patients with initial undifferentiated arthritis (UA) (n = 49).
According to high-density microarray data, several molecular pathways are differentially expressed in patients with RA, SA and OA: T and B cell activation, chromatin remodelling, RAS GTPase activation and extracellular matrix regulation. Strikingly, disease activity (DAS28-CRP) has a significant influence on gene expression patterns in RA samples. Using the low-density assays, samples from patients with OA are easily discriminated from RA and SA samples. However, overlapping molecular patterns are found, in particular between RA and SA biopsies. Therefore, prediction of the clinical diagnosis based on gene expression data results in a diagnostic accuracy of 56.8%, which is increased up to 98.6% by the addition of specific clinical symptoms in the prediction algorithm. Similar observations are made in initial UA samples, in which overlapping molecular patterns also impact the accuracy of the diagnostic algorithm. When clinical symptoms are added, the diagnostic accuracy is strongly improved.
Gene expression signatures are overall different in patients with OA, RA and SA, but overlapping molecular signatures are found in patients with these conditions. Therefore, an accurate diagnosis in patients with UA requires a combination of gene expression and clinical data.
PMCID: PMC4415786  PMID: 25927832
4.  Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis 
Nature  2014;512(7512):69-73.
Rheumatoid arthritis (RA) is a chronic autoinflammatory disease that affects 1-2% of the world population and is characterized by widespread joint inflammation. IL-1 is an important mediator of cartilage destruction in rheumatic diseases1, but our understanding of the upstream mechanisms leading to IL-1β production in rheumatoid arthritis is limited by the absence of suitable RA mouse models in which inflammasomes contribute to pathology. Myeloid-cell-specific deletion of the RA-susceptibility gene A20/TNFAIP3 in mice (A20myel-KO mice) triggers a spontaneous erosive polyarthritis that resembles RA in patients2. Notably, RA in A20myel-KO mice was not rescued by tumor necrosis factor receptor 1 (TNF-R1) deletion, but we showed it to crucially rely on interleukin-1 receptor (IL-1R) signaling. Macrophages lacking A20 had increased basal and LPS-induced expression levels of the inflammasome adaptor Nlrp3 and proIL-1β. As a result, A20-deficiency in macrophages significantly enhanced Nlrp3 inflammasome-mediated caspase-1 activation, pyroptosis and IL-1β secretion by soluble and crystalline Nlrp3 stimuli. In contrast, activation of the Nlrc4 and AIM2 inflammasomes was not altered. Importantly, increased Nlrp3 inflammasome activation contributed to RA pathology in vivo, because deletion of Nlrp3 and caspase-1 markedly protected against RA-associated inflammation and cartilage destruction in A20myel-KO mice. These results reveal A20 as a novel negative regulator of Nlrp3 inflammasome activation, and describe A20myel-KO mice as the first experimental model to study the role of inflammasomes in RA pathology.
PMCID: PMC4126806  PMID: 25043000
inflammasome; Nlrp3; A20; caspase-1; IL1R1
5.  The clinical picture and outcome in adults 
PMCID: PMC4184093
6.  Enhanced TCR footprint by a novel glycolipid increases NKT dependent tumor protection 
Journal of immunology (Baltimore, Md. : 1950)  2013;191(6):10.4049/jimmunol.1203134.
NKT cells, a unique type of regulatory T cells, respond to structurally diverse glycolipids presented by CD1d. While it was previously thought that recognition of glycolipids such as α-GalCer by NKTCR obeys a key-lock principle, it is now clear this interaction is much more flexible. Here, we report the structure-function analysis of a series of novel 6″-OH analogues of α-GalCer with more potent anti-tumor characteristics. Surprisingly, one the novel carbamate analogues, PyrC- α-GalCer, formed novel interactions with the NKTCR. This was associated with an extremely high level of Th1 polarization and superior anti-tumor responses. These data highlight the in vivo relevance of adding aromatic moieties to the 6″-OH position of the sugar and additionally show that judiciously chosen linkers are a promising strategy to generate strong Th1 polarizing glycolipids through increased binding either to CD1d or NKTCR.
PMCID: PMC3817951  PMID: 23960235
7.  An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists 
PLoS ONE  2014;9(1):e87000.
Many analogues of the glycolipid alpha-galactosylceramide (α-GalCer) are known to activate iNKT cells through their interaction with CD1d-expressing antigen-presenting cells, inducing the release of Th1 and Th2 cytokines. Because of iNKT cell involvement and associated Th1/Th2 cytokine changes in a broad spectrum of human diseases, the design of iNKT cell ligands with selective Th1 and Th2 properties has been the subject of extensive research. This search for novel iNKT cell ligands requires refined structural insights. Here we will visualize the chemical space of 333 currently known iNKT cell activators, including several newly tested analogues, by more than 3000 chemical descriptors which were calculated for each individual analogue. To evaluate the immunological responses we analyzed five different cytokines in five different test-systems. We linked the chemical space to the immunological space using a system biology computational approach resulting in highly sensitive and specific predictive models. Moreover, these models correspond with the current insights of iNKT cell activation by α-GalCer analogues, explaining the Th1 and Th2 biased responses, downstream of iNKT cell activation. We anticipate that such models will be of great value for the future design of iNKT cell agonists.
PMCID: PMC3909045  PMID: 24498010
8.  Microbes, the gut and ankylosing spondylitis 
It is increasingly clear that the interaction between host and microbiome profoundly affects health. There are 10 times more bacteria in and on our bodies than the total of our own cells, and the human intestine contains approximately 100 trillion bacteria. Interrogation of microbial communities by using classic microbiology techniques offers a very restricted view of these communities, allowing us to see only what we can grow in isolation. However, recent advances in sequencing technologies have greatly facilitated systematic and comprehensive studies of the role of the microbiome in human health and disease. Comprehensive understanding of our microbiome will enhance understanding of disease pathogenesis, which in turn may lead to rationally targeted therapy for a number of conditions, including autoimmunity.
PMCID: PMC4060176  PMID: 23750937
9.  Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci 
Nature genetics  2013;45(7):730-738.
Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis–associated haplotypes at 11 loci. Two ankylosing spondylitis–associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.
PMCID: PMC3757343  PMID: 23749187
10.  Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model 
PLoS ONE  2013;8(5):e65075.
Immunomodulators have been used in recent years to reactivate host anti-tumor immunity in several hematological malignancies. This report describes the effect of activating natural killer T (NKT) cells by α-Galactosylceramide (α-GalCer) in the 5T33MM model of multiple myeloma (MM). NKT cells are T lymphocytes, co-expressing T and NK receptors, while invariant NKT cells (iNKTs) also express a unique semi-invariant TCR α-chain. We followed iNKT numbers during the development of the disease in both 5T33MM mice and MM patients and found that their numbers dropped dramatically at the end stage of the disease, leading to a loss of total IFN-γ secretion. We furthermore observed that α-GalCer treatment significantly increased the survival of 5T33MM diseased mice. Taken together, our data demonstrate for the first time the possibility of using a preclinical murine MM model to study the effects of α-GalCer and show promising results of α-GalCer treatment in a low tumor burden setting.
PMCID: PMC3669090  PMID: 23741460
11.  Divergent synthetic approach to 6”-modified α-GalCer analogues 
Organic & biomolecular chemistry  2011;9(24):8413-8421.
A synthetic approach is presented for the synthesis of galacturonic acid and d-fucosyl modified KRN7000. The approach allows for late-stage functionalisation of both the sugar 6”-OH and the sphingosine amino groups, which enables convenient synthesis of promising 6”-modified KRN7000 analogues.
PMCID: PMC3246390  PMID: 22042483
12.  Natural killer T cells in adipose tissue prevent insulin resistance 
The Journal of Clinical Investigation  2012;122(9):3343-3354.
Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.
PMCID: PMC3428087  PMID: 22863618
13.  Quantification of IFNγ- and IL17-producing cells after stimulation with citrullinated proteins in healthy subjects and RA patients 
Rheumatology International  2012;33(10):2661-2664.
Antibodies against citrullinated proteins are highly specific for rheumatoid arthritis (RA) and are currently used as a diagnostic marker. In this study, we wanted to quantify the numbers of T cells that react to a wide range of citrullinated proteins in a wide range of HLA-DR subtypes in order to investigate whether citrullination might create T-cell neo-epitopes and could initiate a universal T-cell response. Therefore, PBMCs from healthy volunteers and RA patients were stimulated with a citrullinated and non-citrullinated cell extract on IFNγ-ELISpot. We found a significantly higher number of IFNγ-secreting cells after stimulation with citrullinated proteins compared to non-citrullinated proteins in RA patients (1:14,441 cells vs. 1:32,880 cells) as well as in healthy subjects (1:6,261 reactive cells compared to 1:16,212 cells). Additionally, a higher number of IL17-secreting cells were found after stimulation with citrullinated proteins compared to their non-citrullinated counterparts. Our data indicate that citrulline-dependent T-cell response is not restricted to RA patients but that citrullination as such gives rise to a universal break in tolerance.
PMCID: PMC3782635  PMID: 22825303
Citrullination; Rheumatoid arthritis; ELISpot; T cells
14.  Activated iNKT Cells Promote Memory CD8+ T Cell Differentiation during Viral Infection 
PLoS ONE  2012;7(5):e37991.
α-galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8+ T cells, as a consequence of reduced inflammation.
PMCID: PMC3359346  PMID: 22649570
15.  Involvement of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease: A Different Implication for Colonic and Ileal Disease? 
PLoS ONE  2011;6(10):e25589.
Endoplasmic reticulum (ER) stress has been suggested to play a role in inflammatory bowel disease (IBD). The three branches (ATF6, IRE1 and PERK) of the unfolded protein response (UPR) have different roles and are not necessarily activated simultaneously.
Methodology/Principal Findings
Expression of UPR-related genes was investigated in colonic and ileal biopsies of 23 controls, 15 ulcerative colitis (UC) and 54 Crohn's disease (CD) patients. This expression was confirmed at protein level in colonic and ileal samples of five controls, UC and CD patients. HSPA5, PDIA4 and XBP1s were significantly increased in colonic IBD at mRNA and/or protein levels, indicating activation of the ATF6 and IRE1 branch. Colonic IBD was associated with increased phosphorylation of EIF2A suggesting the activation of the PERK branch, but subsequent induction of GADD34 was not observed. In ileal CD, no differential expression of the UPR-related genes was observed, but our data suggested a higher basal activation of the UPR in the ileal mucosa of controls. This was confirmed by the increased expression of 16 UPR-related genes as 12 of them were significantly more expressed in ileal controls compared to colonic controls. Tunicamycin stimulation of colonic and ileal samples of healthy individuals revealed that although the ileal mucosa is exhibiting this higher basal UPR activation, it is still responsive to ER stress, even more than colonic mucosa.
Activation of the three UPR-related arms is seen in colonic IBD-associated inflammation. However, despite EIF2A activation, inflamed colonic tissue did not increase GADD34 expression, which is usually involved in re-establishment of ER homeostasis. This study also implies the presence of a constitutive UPR activation in healthy ileal mucosa, with no further activation during inflammation. Therefore, engagement of the UPR differs between colon and ileum and this could be a factor in the development of ileal or colonic disease.
PMCID: PMC3196494  PMID: 22028783
16.  Polymorphic Variants of LIGHT (TNF Superfamily-14) Alter Receptor Avidity and Bioavailability1 
The TNF superfamily member, LIGHT (TNFSF14) is a key cytokine that activates T cells and dendritic cells, and is implicated as a mediator of inflammatory, metabolic and malignant diseases. LIGHT engages the Lymphotoxin-β receptor (LTβR) and herpesvirus entry mediator (HVEM, TNFRSF14), but is competitively limited in activating these receptors by soluble decoy receptor-3 (DcR3, TNFRSF6B). Two variants in the human LIGHT alter the protein at E214K (rs344560) in the receptor-binding domain and S32L (rs2291667) in the cytosolic domain, however, the functional impact of these polymorphisms is unknown. A neutralizing antibody failed to bind the LIGHT-214K variant indicating this position as a part of the receptor-binding region. Relative to the predominant reference variant S32/E214, the other variants showed altered avidity with LTβR, and less with HVEM. Heterotrimers of the LIGHT variants decreased binding avidity to DcR3, and minimized the inhibitory effect of DcR3 towards LTβR-induced activation of NF-κB. In patients with immune-mediated inflammatory diseases, such as rheumatoid arthritis, DcR3 protein levels were significantly elevated.
Immunohistochemistry revealed synoviocytes as a significant source of DcR3 production, and DcR3 hyperexpression is controlled by post-transcriptional mechanisms. The increased potential for LTβR signaling, coupled with increased bioavailability due to lower DcR3 avidity, provides a mechanism of how polymorphic variants in LIGHT could contribute to the pathogenesis of inflammatory diseases.
PMCID: PMC2921593  PMID: 20592286
17.  Synthesis and Evaluation of Amino-Modified α-GalCer Analogues 
Organic letters  2010;12(13):2928-2931.
α-GalCer analogues featuring a phytoceramide 3- and 4-amino group have been synthesized. A Mitsunobu reaction involving phthalimide was employed for the introduction of the amino groups at the 3- and 4-positions of suitable phytosphingosine-derived precursors. The influence of these modifications on the interaction with the T-cell receptor of NKT cells was investigated, as well as the capacity of the amino-modified analogues to induce a cytokine response after in vivo administration.
PMCID: PMC2903208  PMID: 20518554
18.  Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis 
EMBO Molecular Medicine  2011;3(4):222-234.
Mycobacterium bovis bacille Calmette-Guerin (BCG) provides only limited protection against pulmonary tuberculosis. We tested the hypothesis that BCG might have retained immunomodulatory properties from its pathogenic parent that limit its protective immunogenicity. Mutation of the molecules involved in immunomodulation might then improve its vaccine potential. We studied the vaccine potential of BCG mutants deficient in the secreted acid phosphatase, SapM, or in the capping of the immunomodulatory ManLAM cell wall component with α-1,2-oligomannoside. Both systemic and intratracheal challenge of mice with Mycobacterium tuberculosis following vaccination showed that the SapM mutant, compared to the parental BCG vaccine, provided better protection: it led to longer-term survival. Persistence of the SapM-mutated BCG in vivo resembled that of the parental BCG indicating that this mutation will likely not compromise the safety of the BCG vaccine. The SapM mutant BCG vaccine was more effective than the parental vaccine in inducing recruitment and activation of CD11c+MHC-IIintCD40int dendritic cells (DCs) to the draining lymph nodes. Thus, SapM acts by inhibiting recruitment of DCs and their activation at the site of vaccination.
PMCID: PMC3377067  PMID: 21328541
Mycobacterium; SapM; tuberculosis; vaccine; BCG
19.  Histopathological cutaneous alterations in systemic sclerosis: a clinicopathological study 
The aims of the present study were to identify histopathological parameters which are linked to local clinical skin disease at two distinct anatomical sites in systemic sclerosis (SSc) patients with skin involvement (limited cutaneous systemic sclerosis (lcSSc) or diffuse cutaneous systemic sclerosis (dcSSc)) and to determine the sensitivity of SSc specific histological alterations, focusing on SSc patients without clinical skin involvement (limited SSc (lSSc)).
Histopathological alterations were systematically scored in skin biopsies of 53 consecutive SSc patients (dorsal forearm and upper inner arm) and 18 controls (upper inner arm). Clinical skin involvement was evaluated using the modified Rodnan skin score. In patients with lcSSc or dcSSc, associations of histopathological parameters with local clinical skin involvement were determined by generalised estimation equation modelling.
The hyalinised collagen score, the myofibroblast score, the mean epidermal thickness, the mononuclear cellular infiltration and the frequency of focal exocytosis differed significantly between biopsies with and without local clinical skin involvement. Except for mononuclear cellular infiltration, all of the continuous parameters correlated with the local clinical skin score at the dorsal forearm. Parakeratosis, myofibroblasts and intima proliferation were present in a minority of the SSc biopsies, but not in controls. No differences were found between lSSc and controls.
Several histopathological parameters are linked to local clinical skin disease. SSc-specific histological alterations have a low diagnostic sensitivity.
PMCID: PMC3241379  PMID: 21356083
20.  Optimized alkylated cyclodextrin polysulphates with reduced risks on thromboembolic accidents improve osteoarthritic chondrocyte metabolism 
Rheumatology (Oxford, England)  2011;50(7):1226-1235.
Objectives. To compare the ability of different cyclodextrin polysulphate (CDPS) derivatives to affect human articular cartilage cell metabolism in vitro.
Methods. OA chondrocytes were cultured in alginate and exposed to 5 µg/ml of 2,3,6-tri-O-methyl-β-cyclodextrin (ME-CD), 2,3-di-O-methyl-6-sulphate-β-cyclodextrin (ME-CD-6-S), 2,6-di-O-methyl-3-sulphate-β-cyclodextrin (ME-CD-3-S), (2-carboxyethyl)-β-CDPS (CE-CDPS), (2-hydroxypropyl)-β-CDPS (HP-CDPS), 6-monoamino-6-monodeoxy-β-CDPS (MA-CDPS) or β-CDPS for 5 days. Effects on IL-1-driven chondrocyte extracellular matrix (ECM) metabolism were assayed by analysis of the accumulation of aggrecan in the interterritorial matrix, IL-6 secretion and qPCR. MA-CDPS, HP-CDPS, CE-CDPS and CDPS were analysed for their in vitro effect on coagulation and their ability to activate platelets in an in vitro assay to detect possible cross-reactivity with heparin-induced thrombocytopenia (HIT) antibodies.
Results. The monosulphated cyclodextrins ME-CD-6-S and -3-S failed to affect aggrecan synthesis and IL-6 secretion by the OA chondrocytes. Polysulphated cyclodextrins MA-CDPS, HP-CDPS, CE-CDPS and CDPS at 5 µg/ml concentrations, on the other hand, significantly induced aggrecan production and repressed IL-6 release by the chondrocytes in culture. aPTT and PT for all derivatives were lengthened for polysaccharide concentrations >50 µg/ml. Five micrograms per millilitre of β-CDPS concentrations that significantly modulated ECM ground substance production in vitro did not affect aPTT or PT. Furthermore, CE-CDPS, in contrast to MA-CDPS, HP-CDPS and CDPS, did not significantly activate platelets, suggesting a minimal potential to induce HIT thromboembolic accidents in vivo.
Conclusions. CE-CDPS is a new, structurally adjusted, sulphated β-cyclodextrin derivative with preserved chondroprotective capacity and a promising safety profile.
PMCID: PMC3116210  PMID: 21345936
Chondroprotection; Osteoarthritis; Cyclodextrin polysulphates
21.  Differential mucosal expression of Th17-related genes between the inflamed colon and ileum of patients with inflammatory bowel disease 
BMC Immunology  2010;11:61.
Immunological and genetic findings implicate Th17 effector cytokines in the pathogenesis of inflammatory bowel disease (IBD). Expression of Th17 pathway-associated genes is mainly studied in colonic disease. The present study assessed the mRNA expression levels of Th17 effector cytokines (IL17A, IL17F, IL21, IL22 and IL26) and genes involved in differentiation (IL6, IL1B, TGFB1, IL23A and STAT3) and recruitment of Th17 cells (CCR6 and CCL20) by quantitative real-time PCR analysis of colonic and ileal biopsies from 22 healthy control subjects, 26 patients with Crohn's disease (CD) and 12 patients with ulcerative colitis (UC). Inflammation was quantified by measuring expression of the inflammatory mediators IL8 and TNF.
Evaluation of mRNA expression levels in colonic and ileal control samples revealed that TNF, TGFB1, STAT3 and CCR6 were expressed at higher levels in the ileum than in the colon. Expression of all the Th17 pathway-associated genes was increased in inflamed colonic samples. The increased expression of these genes was predominantly observed in samples from UC patients and was associated with more intense inflammation. Although increased expression of IL17A, IL17F, IL21 and IL26 was detected in inflamed ileal samples, expression of the indispensable Th17 cell differentiation factors TGFB1 and IL23A, the signaling molecule STAT3 and the Th17 recruitment factors CCR6 and CCL20 were unchanged.
Our findings suggest that immune regulation is different in colonic and ileal disease, which might have important consequences for therapeutic intervention.
PMCID: PMC3016394  PMID: 21144017
22.  Linking Crohn's Disease and Ankylosing Spondylitis: It's All about Genes! 
PLoS Genetics  2010;6(12):e1001223.
PMCID: PMC2996322  PMID: 21152009
23.  Evidence for Significant Overlap between Common Risk Variants for Crohn's Disease and Ankylosing Spondylitis 
PLoS ONE  2010;5(11):e13795.
A multicenter genome-wide association scan for Crohn's Disease (CD) has recently reported 40 CD susceptibility loci, including 29 novel ones (19 significant and 10 putative). To gain insight into the genetic overlap between CD and ankylosing spondylitis (AS), these markers were tested for association in AS patients.
Principal Findings
Two previously established associations, namely with the MHC and IL23R loci, were confirmed. In addition, rs2872507, which maps to a locus associated with asthma and influences the expression of the ORMDL3 gene in lymphoblastoid cells, showed a significant association with AS (p = 0.03). In gut biopsies of AS and CD patients, ORMDL3 expression was not significantly different from controls and no correlation was found with the rs2872507 genotype (Spearman's rho: −0.067). The distribution of p-values for the remaining 36 SNPs was significantly skewed towards low p-values unless the top 5 ranked SNPs (ORMDL3, NKX2–3, PTPN2, ICOSLG and MST1) were excluded from the analysis.
Association analysis using risk variants for CD led to the identification of a new risk variant associated with AS (ORMDL3), underscoring a role for ER stress in AS. In addition, two known and five potentially relevant associations were detected, contributing to common susceptibility of CD and AS.
PMCID: PMC2970560  PMID: 21072187
24.  A multiparameter approach to monitor disease activity in collagen-induced arthritis 
Arthritis Research & Therapy  2010;12(4):R160.
Disease severity in collagen-induced arthritis (CIA) is commonly assessed by clinical scoring of paw swelling and histological examination of joints. Although this is an accurate approach, it is also labour-intensive and the application of less invasive and less time-consuming methods is of great interest. However, it is still unclear which of these methods represents the most discriminating measure of disease activity.
We undertook a comparative analysis in which different measurements of inflammation and tissue damage in CIA were studied on an individual mouse level. We compared the current gold standard methods - clinical scoring and histological examination - with alternative methods based on scoring of X-ray or micro-computed tomography (CT) images and investigated the significance of systemically expressed proteins, involved in CIA pathogenesis, that have potential as biomarkers.
Linear regression analysis revealed a marked association of serum matrix metalloproteinase (MMP)-3 levels with all features of CIA including inflammation, cartilage destruction and bone erosions. This association was improved by combined detection of MMP-3 and anti-collagen IgG2a antibody concentrations. In addition, combined analysis of both X-ray and micro-CT images was found to be predictive for cartilage and bone damage. Most remarkably, validation analysis using an independent data set proved that variations in disease severity, induced by different therapies, could be accurately represented by predicted values based on the proposed parameters.
Our analyses revealed that clinical scoring, combined with serum MMP-3, anti-collagen IgG2a measurement and scoring of X-ray and micro-CT images, yields a comprehensive insight into the different aspects of disease activity in CIA.
PMCID: PMC2945063  PMID: 20731827
25.  Citrullinated vimentin as an important antigen in immune complexes from synovial fluid of rheumatoid arthritis patients with antibodies against citrullinated proteins 
Arthritis Research & Therapy  2010;12(4):R132.
Rheumatoid arthritis (RA) is an inflammatory disease, which results in destruction of the joint. The presence of immune complexes (IC) in serum and synovial fluid of RA patients might contribute to this articular damage through different mechanisms, such as complement activation. Therefore, identification of the antigens from these IC is important to gain more insight into the pathogenesis of RA. Since RA patients have antibodies against citrullinated proteins (ACPA) in their serum and synovial fluid (SF) and since elevated levels of citrullinated proteins are detected in the joints of RA patients, citrullinated antigens are possibly present in IC from RA patients.
IC from serum of healthy persons, serum of RA patients and IC from synovial fluid of RA patients and Spondyloarthropathy (SpA) patients were isolated by immunoprecipitation. Identification of the antigens was performed by SDS-PAGE, mass spectrometry and immunodetection. The presence of citrullinated proteins was evaluated by anti-modified citrulline (AMC) staining.
Circulating IC in the serum of RA patients and healthy controls contain fibrinogenβ and fibronectin, both in a non-citrullinated form. Additionally, in IC isolated from RA SF, fibrinogenγ and vimentin were identified as well. More importantly, vimentin and a minor portion of fibrinogenβ were found to be citrullinated in the isolated complexes. Moreover these citrullinated antigens were only found in ACPA+ patients. No citrullinated antigens were found in IC from SF of SpA patients.
Citrullinated fibrinogenβ and citrullinated vimentin were found in IC from SF of ACPA+ RA patients, while no citrullinated antigens were found in IC from SF of ACPA- RA patients or SpA patients or in IC from serum of RA patients or healthy volunteers. The identification of citrullinated vimentin as a prominent citrullinated antigen in IC from SF of ACPA+ RA patients strengthens the hypothesis that citrullinated vimentin plays an important role in the pathogenesis of RA.
PMCID: PMC2945022  PMID: 20609218

Results 1-25 (38)