Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  An Altered gp100 Peptide Ligand with Decreased Binding by TCR and CD8α Dissects T Cell Cytotoxicity from Production of Cytokines and Activation of NFAT 
Altered peptide ligands (APLs) provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100280–288 APLs with respect to T cell cytotoxicity, production of cytokines, and activation of Nuclear Factor of Activated T cells (NFAT) by human T cells gene-engineered with a gp100-HLA-A2-specific TCRαβ. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3), which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6) elicited T cell cytotoxicity and production of IFNγ, and to a lesser extent TNFα, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, T cell receptor (TCR)-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wild-type (wt) peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8α. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8α. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.
PMCID: PMC3762364  PMID: 24027572
activation of nuclear factor of activated T cells; altered peptide ligands; cytokine production; cytotoxicity; human T lymphocytes; T cell receptor
2.  NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury 
Brain  2012;135(3):886-899.
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
PMCID: PMC3286337  PMID: 22366799
multiple sclerosis; reactive oxygen species; oxidative injury; NADPH oxidase; demyelination; neurodegeneration
3.  TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets 
Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.
PMCID: PMC3287115  PMID: 22400038
4.  Clearance of Genotype 1b Hepatitis C Virus in Chimpanzees in the Presence of Vaccine-Induced E1-Neutralizing Antibodies 
The Journal of Infectious Diseases  2011;204(6):837-844.
Accumulating evidence indicates that neutralizing antibodies play an important role in protection from chronic hepatitis C virus (HCV) infection. Efforts to elicit such responses by immunization with intact heterodimeric E1E2 envelope proteins have met with limited success. To determine whether antigenic sites, which are not exposed by the combined E1E2 heterodimer structure, are capable of eliciting neutralizing antibody responses, we expressed and purified each as separate recombinant proteins E1 and E2, from which the immunodominant hypervariable region (HVR-1) was deleted. Immunization of chimpanzees with either E1 or E2 alone induced antigen-specific T-helper cytokines of similar magnitude. Unexpectedly, the capacity to neutralize HCV was observed in E1 but not in animals immunized with E2 devoid of HVR-1. Furthermore, in vivo only E1-vaccinated animals exposed to the heterologous HCV-1b inoculum cleared HCV infection.
PMCID: PMC3156919  PMID: 21849281
6.  P-Glycoprotein Acts as an Immunomodulator during Neuroinflammation 
PLoS ONE  2009;4(12):e8212.
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which autoreactive myelin-specific T cells cause extensive tissue damage, resulting in neurological deficits. In the disease process, T cells are primed in the periphery by antigen presenting dendritic cells (DCs). DCs are considered to be crucial regulators of specific immune responses and molecules or proteins that regulate DC function are therefore under extensive investigation. We here investigated the potential immunomodulatory capacity of the ATP binding cassette transporter P-glycoprotein (P-gp). P-gp generally drives cellular efflux of a variety of compounds and is thought to be involved in excretion of inflammatory agents from immune cells, like DCs. So far, the immunomodulatory role of these ABC transporters is unknown.
Methods and Findings
Here we demonstrate that P-gp acts as a key modulator of adaptive immunity during an in vivo model for neuroinflammation. The function of the DC is severely impaired in P-gp knockout mice (Mdr1a/1b−/−), since both DC maturation and T cell stimulatory capacity is significantly decreased. Consequently, Mdr1a/1b −/− mice develop decreased clinical signs of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Reduced clinical signs coincided with impaired T cell responses and T cell-specific brain inflammation. We here describe the underlying molecular mechanism and demonstrate that P-gp is crucial for the secretion of pro-inflammatory cytokines such as TNF-α and IFN-γ. Importantly, the defect in DC function can be restored by exogenous addition of these cytokines.
Our data demonstrate that P-gp downmodulates DC function through the regulation of pro-inflammatory cytokine secretion, resulting in an impaired immune response. Taken together, our work highlights a new physiological role for P-gp as an immunomodulatory molecule and reveals a possible new target for immunotherapy.
PMCID: PMC2785479  PMID: 19997559

Results 1-6 (6)