Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("debits, Reno")
1.  Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma 
Viruses  2014;6(8):3080-3096.
Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs), which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.
PMCID: PMC4147687  PMID: 25118638
glioblastoma; oncolytic; cellular vehicles; GSC; T-cell therapy; virotherapy; Delta24-RGD
2.  The In Vivo Therapeutic Efficacy of the Oncolytic Adenovirus Delta24-RGD Is Mediated by Tumor-Specific Immunity 
PLoS ONE  2014;9(5):e97495.
The oncolytic adenovirus Delta24-RGD represents a new promising therapeutic agent for patients with a malignant glioma and is currently under investigation in clinical phase I/II trials. Earlier preclinical studies showed that Delta24-RGD is able to effectively lyse tumor cells, yielding promising results in various immune-deficient glioma models. However, the role of the immune response in oncolytic adenovirus therapy for glioma has never been explored. To this end, we assessed Delta24-RGD treatment in an immune-competent orthotopic mouse model for glioma and evaluated immune responses against tumor and virus. Delta24-RGD treatment led to long-term survival in 50% of mice and this effect was completely lost upon administration of the immunosuppressive agent dexamethasone. Delta24-RGD enhanced intra-tumoral infiltration of F4/80+ macrophages, CD4+ and CD8+ T-cells, and increased the local production of pro-inflammatory cytokines and chemokines. In treated mice, T cell responses were directed to the virus as well as to the tumor cells, which was reflected in the presence of protective immunological memory in mice that underwent tumor rechallenge. Together, these data provide evidence that the immune system plays a vital role in the therapeutic efficacy of oncolytic adenovirus therapy of glioma, and may provide angles to future improvements on Delta24-RGD therapy.
PMCID: PMC4035348  PMID: 24866126
3.  Magnetic-Activated Cell Sorting of TCR-Engineered T Cells, Using tCD34 as a Gene Marker, but Not Peptide–MHC Multimers, Results in Significant Numbers of Functional CD4+ and CD8+ T Cells 
Human Gene Therapy Methods  2012;23(3):213-224.
T cell-sorting technologies with peptide–MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100280–288/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide–MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide–MHC multimers, we observed that Streptamer®, when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide–MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide–MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4+ T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4+ T cells.
Govers and colleagues perform direct comparisons between T cell sorting reagents for their ability to enrich T cells. They compare in vitro properties of primary human T cells gene-engineered with gp100280-288 Human Leukocyte Antigen A2-specific T-cell receptorαβ undergoing Magnetic-Activated Cell Sorting either with different peptide-MHC multimers or with an antibody against truncated CD34 (tCD34). Among the multimers, streptamers resulted in the best T cell yield, stability, and expansion ability after sorting, while tCD34-sorted cells resulted in the most significant T cell yield and enrichment.
PMCID: PMC4015082  PMID: 22871260
4.  An Altered gp100 Peptide Ligand with Decreased Binding by TCR and CD8α Dissects T Cell Cytotoxicity from Production of Cytokines and Activation of NFAT 
Altered peptide ligands (APLs) provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100280–288 APLs with respect to T cell cytotoxicity, production of cytokines, and activation of Nuclear Factor of Activated T cells (NFAT) by human T cells gene-engineered with a gp100-HLA-A2-specific TCRαβ. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3), which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6) elicited T cell cytotoxicity and production of IFNγ, and to a lesser extent TNFα, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, T cell receptor (TCR)-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wild-type (wt) peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8α. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8α. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.
PMCID: PMC3762364  PMID: 24027572
activation of nuclear factor of activated T cells; altered peptide ligands; cytokine production; cytotoxicity; human T lymphocytes; T cell receptor
5.  TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu 
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
PMCID: PMC3821161  PMID: 24265631
antigens; inhibitory micro-milieu; solid tumors; T cell avidity; T cell co-stimulation; T cells; TCR affinity; TCR transgenes
6.  TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets 
Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.
PMCID: PMC3287115  PMID: 22400038
7.  Major histocompatibility complex class I molecules with super-enhanced CD8 binding properties bypass the requirement for cognate TCR recognition and non-specifically activate cytotoxic T lymphocytes1 
CD8+ cytotoxic T lymphocytes (CTL) are essential for effective immune defence against intracellular microbes and neoplasia. CTL recognize short peptide fragments presented in association with major histocompatibility complex class I (MHCI) molecules on the surface of infected or dysregulated cells. Antigen recognition involves the binding of both T cell receptor (TCR) and CD8 co-receptor to a single ligand (pMHCI). The TCR/pMHCI interaction confers antigen specificity, whereas the pMHCI/CD8 interaction mediates enhanced sensitivity to antigen. Striking biophysical differences exist between the TCR/pMHCI and pMHCI/CD8 interactions; indeed, the pMHCI/CD8 interaction can be >100-fold weaker than the cognate TCR/pMHCI interaction. Here, we show that increasing the strength of the pMHCI/CD8 interaction by ~15-fold results in non-specific, cognate antigen-independent pMHCI tetramer binding at the cell surface. Furthermore, pMHCI molecules with super-enhanced affinity for CD8 activate CTL in the absence of a specific TCR/pMHCI interaction to elicit a full range of effector functions, including cytokine/chemokine release, degranulation and proliferation. Thus, the low solution binding affinity of the pMHCI/CD8 interaction is essential for the maintenance of CTL antigen specificity.
PMCID: PMC3024536  PMID: 20190139
8.  A Critical Role for Interleukin 18 in Primary and Memory Effector Responses to Listeria monocytogenes That Extends Beyond Its Effects on Interferon γ Production 
The stimulation of interferon (IFN)-γ by interleukin (IL)-12 has been shown to provide protection from intracellular pathogens such as Listeria monocytogenes. Tumor necrosis factor (TNF) is also a major player in the resolution of Listeria infections and is suggested to have more global effects than can be explained by the induction of IFN-γ alone. Since IL-18 synergizes with IL-12 to induce IFN-γ production by natural killer and T helper (Th)1 cells, we determined its role in responses to Listeria. IL-18 appeared to be even more potent than either IL-12 or IFN-γ for protection against this pathogen and IL-18 enhanced bacterial clearance in the complete absence of IFN-γ. Indeed IL-18 was comparable to TNF in its ability to resolve the infection and showed a lowered protective capacity in the absence of TNF. Moreover, IL-18 induced macrophages to secrete both TNF and nitric oxide after a Listeria infection. IL-18 was also essential for optimal IFN-γ production by antigen-specific T cells. Therefore, IL-18 operates via its effects on both the innate immune response, including macrophages, as well as on Th1 cells, to protect against Listeria.
PMCID: PMC2193467  PMID: 11489953
Listeria; IL-18; TNF; NO; Th1 cells
9.  Cytokine Networking in Lungs of Immunocompetent Mice in Response to Inhaled Aspergillus fumigatus 
Infection and Immunity  2001;69(3):1554-1560.
Cytokine networking in the lung in response to inhaled Aspergillus fumigatus was assessed using a murine model of primary pulmonary aspergillosis in immunocompetent Crl:CF-1 mice. Inhalation of virulent A. fumigatus (6 × 106 CFU) resulted in the induction of interleukin 18 (IL-18), tumor necrosis factor alpha (TNF-α), IL-12, and gamma interferon (IFN-γ) protein in bronchoalveolar lavage fluid and/or lung tissue. Induction of immunoreactive IL-18 preceded induction of TNF-α protein, which preceded induction of immunoreactive IL-12 and IFN-γ. Real-time reverse transcriptase (RT) PCR analysis of infected lung tissue demonstrated that induction of IL-18 protein also preceded induction of pulmonary TNF-α, IL-12, and IFN-γ mRNAs. Mice were subsequently treated with cytokine-specific neutralizing monoclonal antibodies (MAbs) to the IL-18 receptor (anti-IL-18R MAb), TNF-α (anti-TNF-α MAb), IL-12 (anti-IL-12 MAb), and/or IFN-γ (anti-IFN-γ MAb), and effects on intrapulmonary cytokine activity and growth of A. fumigatus were assessed in infected lung homogenates. Simultaneous neutralization of IL-12 and IL-18 resulted in decreased levels of immunoreactive TNF-α, while neutralization of IL-18, TNF-α, or IL-12 alone or of IL-18 and IL-12 together resulted in decreased levels of immunoreactive IFN-γ. Simultaneous neutralization of IL-12 and IL-18 or neutralization of TNF-α alone or in combination with IL-12, IL-18, or IFN-γ also resulted in a significant increase in A. fumigatus CFU in lung tissue. Taken together, these results demonstrate that endogenous IL-18, IL-12, and TNF-α, through their modulatory effects on both intrapulmonary cytokine activity and growth of A. fumigatus, play key roles in host defense against primary pulmonary aspergillosis.
PMCID: PMC98055  PMID: 11179326
10.  Immunomodulatory Role of Endogenous Interleukin-18 in Gamma Interferon-Mediated Resolution of Replicative Legionella pneumophila Lung Infection 
Infection and Immunity  2000;68(12):6567-6573.
The in vivo role of endogenous interleukin-18 (IL-18) in modulating gamma interferon (IFN-γ)-mediated resolution of replicative Legionella pneumophila lung infection was assessed using a murine model of Legionnaires' disease. Intratracheal inoculation of A/J mice with virulent bacteria (106 L. pneumophila organisms per mouse) resulted in induction of IL-18 protein in bronchoalveolar lavage fluid (BALF) and intrapulmonary expression of IL-18 mRNA. Real-time quantitative RT-PCR analysis of infected lung tissue demonstrated that induction of IL-18 in BALF preceded induction of IL-12 and IFN-γ mRNAs in the lung. Blocking intrapulmonary IL-18 activity by administration of a monoclonal antibody (MAb) to the IL-18 receptor (anti-IL-18R MAb) prior to L. pneumophila infection inhibited induction of intrapulmonary IFN-γ production but did not significantly alter resolution of replicative L. pneumophila lung infection. In contrast, blocking endogenous IL-12 activity by administration of anti-IL-12 MAb) alone or in combination with anti-IL-18R MAb inhibited induction of intrapulmonary IFN-γ and resulted in enhanced intrapulmonary growth of the bacteria within 5 days postinfection. Taken together, these results demonstrate that IL-18 plays a key role in modulating induction of IFN-γ in the lung in response to L. pneumophila and that together with IL-12, IL-18 regulates intrapulmonary growth of the bacteria.
PMCID: PMC97751  PMID: 11083766
11.  TCR-engineered T cells: A model of inducible TCR expression to dissect the interrelationship between two TCRs 
European Journal of Immunology  2013;44(1):265-274.
TCR gene modified T cells for adoptive therapy simultaneously express the Tg TCR and the endogenous TCR, which might lead to mispaired TCRs with harmful unknown specificity and to a reduced function of TCR-Tg T cells. We generated dual TCR T cells in two settings in which either TCR was constitutively expressed by a retroviral promoter while the second TCR expression was regulable by a Tet-on system. Constitutively expressed TCR molecules were reduced on the cell surface depending on the induced TCR expression leading to strongly hampered function. Besides that, using fluorescence resonance energy transfer we detected mispaired TCR dimers and different pairing behaviors of individual TCR chains with a mutual influence on TCR chain expression. The loss of function and mispairing could not be avoided by changing the TCR expression level or by introduction of an additional cysteine bridge. However, in polyclonal T cells, optimized TCR formats (cysteineization, codon optimization) enhanced correct pairing and function. We conclude from our data that (i) the level of mispairing depends on the individual TCRs and is not reduced by increasing the level of one TCR, and (ii) modifications (cysteineization, codon optimization) improve correct pairing but do not completely exclude mispairing (cysteineization).
PMCID: PMC4209802  PMID: 24114521
Fluorescence resonance energy transfer (FRET); Inducible gene expression; TCR gene optimization; TCR gene therapy; TCR mispairing

Results 1-11 (11)