Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  The determinants of tumour immunogenicity 
Nature reviews. Cancer  2012;12(4):307-313.
Many standard and targeted therapies, as well as radiotherapy, have been shown to induce an anti-tumour immune response, and immunotherapies rely on modulating the host immune system to induce an anti-tumour immune response. However, the immune response to such therapies is often reliant on the immunogenicity of a tumour. Tumour immunogenicity varies greatly between cancers of the same type in different individuals and between different types of cancer. So, what do we know about tumour immunogenicity and how might we therapeutically improve tumour immunogenicity? We asked four leading cancer immunologists around the world for their opinions on this important issue.
PMCID: PMC3552609  PMID: 22378190
2.  High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens 
After vaccination of melanoma patients with MAGE antigens, we observed that even in the few patients showing tumor regression, the frequency of anti-vaccine T cells in the blood was often either undetectable or <10−5 of CD8 T cells. This frequency being arguably too low for these cells to be sole effectors of rejection, we reexamined the contribution of T cells recognizing other tumor antigens. The presence of such antitumor T cells in melanoma patients has been widely reported. To begin assessing their contribution to vaccine-induced rejection, we evaluated their blood frequency in five vaccinated patients. The antitumor cytotoxic T lymphocyte (CTL) precursors ranged from 10−4 to 3 × 10−3, which is 10–10,000 times higher than the anti-vaccine CTL in the same patient. High frequencies were also observed before vaccination. In a patient showing nearly complete regression after vaccination with a MAGE-3 antigen, we observed a remarkably focused antitumoral response. A majority of CTL precursors (CTLp's) recognized antigens encoded by MAGE-C2, another cancer-germline gene. Others recognized gp100 antigens. CTLp's recognizing MAGE-C2 and gp100 antigens were already present before vaccination, but new clonotypes appeared afterwards. These results suggest that a spontaneous antitumor T cell response, which has become ineffective, can be reawakened by vaccination and contribute to tumor rejection. This notion is reinforced by the frequencies of anti-vaccine and antitumor CTLs observed inside metastases, as presented by Lurquin et al. (Lurquin, C., B. Lethé, V. Corbière, I. Théate, N. van Baren, P.G. Coulie, and T. Boon. 2004. J. Exp. Med. 201:249–257).
PMCID: PMC2212796  PMID: 15657293
3.  Absence of recognition of common melanocytic antigens by T cells isolated from the cerebrospinal fluid of a Vogt-Koyanagi-Harada patient 
Molecular Vision  2014;20:956-969.
Vogt-Koyanagi-Harada (VKH) syndrome is an autoimmune disease characterized by inaugural uveomeningitidis and hearing loss and at late stages a depigmentation in eyes and skin. Melanocytes are the cells common to the four affected tissues, namely eye, brain, inner ear, and skin. Melanocytes are therefore considered as the source of self-antigens. The melanocytic proteins tyrosinase-related protein-1 (TRP1), TRP2, tyrosinase, and gp100 have been proposed as the proteins targeted by autoreactive T cells from VKH patients bearing human leukocyte antigen (HLA)-DRB1*04:05, the HLA allele classically associated with VKH disease. The objective of this work was to determine the antigens recognized by a large number of potentially autoreactive CD4 T lymphocytes obtained from the cerebrospinal fluid of one VKH patient who did not express HLA-DRB1*04:05.
T cells were isolated from the cerebrospinal fluid of a newly diagnosed HLA-DRB1*14:01,*15:03;-DPB1*01:01,*04:02 patient in the acute phase of the VKH disease and cloned by limiting dilution. Each of the 107 T cell clones, of which 90% were CD4+, was tested for its ability to secrete cytokines upon contact with autologous antigen-presenting cells loaded with either of the melanocytic proteins TRP1, TRP2, tyrosinase, gp100, Melan-A and KU-MEL-1. The sensitivity of our recombinant bacteria-based approach was validated with a CD4 T cell clone with known antigen specificity. The ability of each of the 107 clones to secrete cytokines upon nonspecific stimulation was verified.
None of the 107 T cell clones was able to secrete tumor necrosis factor-α, interferon-γ, interleukin (IL)-5, or IL-17 upon contact with autologous B cells loaded with any of the six common melanocytic proteins. Nine clones secreted high-level IL-17 upon stimulation with beads coated with antibodies.
The self-antigens that triggered the VKH disease in this patient probably derive from proteins other than the six melanocytic proteins mentioned above. Further study of antigens that are recognized by potential autoreactive T cells from VKH patients is likely to benefit from testing a broader set of melanocytic proteins.
PMCID: PMC4077848  PMID: 24991188
4.  Characterization of T cell receptors directed against HLA-A*01 and C*07 restricted epitopes of MAGE-A3 and MAGE-A12 
The ability of T cells that have been genetically engineered to express T cell receptors (TCRs) directed against tumor antigens to mediate tumor regression has been demonstrated in several clinical trials. These TCRs have primarily targeted HLA-A*0201 restricted TCRs, as approximately 50% of Caucasians, who represent the predominant population of patients who develop melanomas, expresses this HLA class I allele. These therapies could be extended to additional patients through the use of TCRs that target epitopes that are presented by additional class I alleles that are prevalent in this population such as HLA-C*07 and HLA-A*01, which are expressed by approximately 50% and 30% of patients, respectively. Therefore, two TCRs that recognize an epitope of MAGE-A12 in the context of HLA-C*07, as well as two TCRs that recognize an epitope of MAGE-A3 in the context of HLA-A*01 were isolated from tumor reactive T cell clones and cloned in a recombinant retroviral expression vector. Comparative studies indicated that one of the two MAGE-A3 reactive TCRs and one of the two MAGE-A12 reactive TCRs were superior to the additional TCRs in conferring transduced PBMC with the capacity to recognize a broad array of antigen and MHC positive target cells. These results provide support the use of these TCRs in cancer adoptive immunotherapy trials.
PMCID: PMC3489490  PMID: 23090077
T cell receptors; cancer/germline antigens; T cell epitopes; cancer immunotherapy
5.  GARP Is Regulated by miRNAs and Controls Latent TGF-β1 Production by Human Regulatory T Cells 
PLoS ONE  2013;8(9):e76186.
GARP is a transmembrane protein present on stimulated human regulatory T lymphocytes (Tregs), but not on other T lymphocytes (Th cells). It presents the latent form of TGF-β1 on the Treg surface. We report here that GARP favors the cleavage of the pro-TGF-β1 precursor and increases the amount of secreted latent TGF-β1. Stimulated Tregs, which naturally express GARP, and Th cells transfected with GARP secrete a previously unknown form of latent TGF-β1 that is disulfide-linked to GARP. These GARP/TGF-β1 complexes are possibly shed from the T cell surface. Secretion of GARP/TGF-β1 complexes was not observed with transfected 293 cells and may thus be restricted to the T cell lineage. We conclude that in stimulated human Tregs, GARP not only displays latent TGF-β1 at the cell surface, but also increases its secretion by forming soluble disulfide-linked complexes. Moreover, we identified six microRNAs (miRNAs) that are expressed at lower levels in Treg than in Th clones and that target a short region of the GARP 3’ UTR. In transfected Th cells, the presence of this region decreased GARP levels, cleavage of pro-TGF-β1, and secretion of latent TGF-β1.
PMCID: PMC3787020  PMID: 24098777
6.  Lymphoid neogenesis in melanoma 
Oncoimmunology  2013;2(1):e22505.
Metastatic melanoma lesions sometimes host ectopic lymphoid structures exhibiting ongoing adaptive immune responses. Here, we discuss how this finding fits in our current view of antitumor immunity.
PMCID: PMC3583922  PMID: 23483539
ectopic lymphoid structures; germinal center; humoral response; IgA; lymphoid neogenesis; melanoma; metastasis
7.  TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets 
Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2) and MAGE-A3243-258/HLA-DP4 (MA3/DP4). We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.
PMCID: PMC3287115  PMID: 22400038
8.  DNA methylation profiling reveals a predominant immune component in breast cancers 
EMBO Molecular Medicine  2011;3(12):726-741.
Breast cancer is a molecularly, biologically and clinically heterogeneous group of disorders. Understanding this diversity is essential to improving diagnosis and optimizing treatment. Both genetic and acquired epigenetic abnormalities participate in cancer, but the involvement of the epigenome in breast cancer and its contribution to the complexity of the disease are still poorly understood. By means of DNA methylation profiling of 248 breast tissues, we have highlighted the existence of previously unrecognized breast cancer groups that go beyond the currently known ‘expression subtypes’. Interestingly, we showed that DNA methylation profiling can reflect the cell type composition of the tumour microenvironment, and in particular a T lymphocyte infiltration of the tumours. Further, we highlighted a set of immune genes having high prognostic value in specific tumour categories. The immune component uncovered here by DNA methylation profiles provides a new perspective for the importance of the microenvironment in breast cancer, holding implications for better management of breast cancer patients.
PMCID: PMC3377115  PMID: 21910250
breast cancer; DNA methylation; epigenetics; epigenomics; microenvironment
9.  Rheumatoid arthritis and pregnancy: evolution of disease activity and pathophysiological considerations for drug use 
Rheumatology (Oxford, England)  2011;50(11):1955-1968.
It has long been known that pregnancy and childbirth have a profound effect on the disease activity of rheumatic diseases. For clinicians, the management of patients with RA wishing to become pregnant involves the challenge of keeping disease activity under control and adequately adapting drug therapy during pregnancy and post-partum. This article aims to summarize the current evidence on the evolution of RA disease activity during and after pregnancy and the use of anti-rheumatic drugs around this period. Of recent interest is the potential use of anti-TNF compounds in the preconception period and during pregnancy. Accumulating experience with anti-TNF therapy in other immune-mediated inflammatory diseases, such as Crohn’s disease, provides useful insights for the use of TNF blockade in pregnant women with RA, or RA patients wishing to become pregnant.
PMCID: PMC3198908  PMID: 21890617
Pregnancy; Rheumatoid arthritis; Disease activity; Pregnancy outcome; Drug treatment; Anti-TNF; Review
10.  Review of the 25th annual scientific meeting of the International Society for Biological Therapy of Cancer 
Led by key opinion leaders in the field, the 25th Annual Meeting of the International Society for Biological Therapy of Cancer (iSBTc, recently renamed the Society for Immunotherapy of Cancer, SITC) provided a scientific platform for ~500 attendees to exchange cutting-edge information on basic, clinical, and translational research in cancer immunology and immunotherapy. The meeting included keynote addresses on checkpoint blockade in cancer therapy and recent advances in therapeutic vaccination against cancer induced by Human Papilloma Virus 16. Participants from 29 countries interacted through oral presentations, panel discussions, and posters on topics that included dendritic cells and cancer, targeted therapeutics and immunotherapy, innate/adaptive immune interplay in cancer, clinical trial endpoints, vaccine combinations, countering negative regulation, immune cell trafficking to tumor microenvironment, and adoptive T cell transfer. In addition to the 50 oral presentations and >180 posters on these topics, a new SITC/iSBTc initiative to create evidence-based Cancer Immunotherapy Guidelines was announced. The SITC/iSBTc Biomarkers Taskforce announced the release of recommendations on immunotherapy biomarkers and a highly successful symposium on Immuno-Oncology Biomarkers that took place on the campus of the National Institutes of Health (NIH) immediately prior to the Annual Meeting. At the Annual Meeting, the NIH took the opportunity to publicly announce the award of the U01 grant that will fund the Cancer Immunotherapy Trials Network (CITN). In summary, the Annual Meeting gathered clinicians and scientists from academia, industry, and regulatory agencies from around the globe to interact and exchange important scientific advances related to tumor immunobiology and cancer immunotherapy.
PMCID: PMC3115875  PMID: 21569425
11.  Selective cancer-germline gene expression in pediatric brain tumors 
Journal of Neuro-Oncology  2008;88(3):273-280.
Cancer-germline genes (CGGs) code for immunogenic antigens that are present in various human tumors and can be targeted by immunotherapy. Their expression has been studied in a wide range of human tumors in adults. We measured the expression of 12 CGGs in pediatric brain tumors, to identify targets for therapeutic cancer vaccines. Real Time PCR was used to quantify the expression of genes MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A6, MAGE-A10, MAGE-A12, MAGE-C2, NY-ESO-1 and GAGE-1,2,8 in 50 pediatric brain tumors of different histological subtypes. Protein expression was examined with immunohistochemistry. Fifty-five percent of the medulloblastomas (n = 11), 86% of the ependymomas (n = 7), 40% of the choroid plexus tumors (n = 5) and 67% of astrocytic tumors (n = 27) expressed one or more CGGs. Immunohistochemical analysis confirmed qPCR results. With exception of a minority of tumors, the overall level of CGG expression in pediatric brain tumors was low. We observed a high expression of at least one CGG in 32% of the samples. CGG-encoded antigens are therefore suitable targets in a very selected group of pediatric patients with a brain tumor. Interestingly, glioblastomas from adult patients expressed CGGs more often and at significantly higher levels compared to pediatric glioblastomas. This observation is in line with the notion that pediatric and adult glioblastomas develop along different genetic pathways.
Electronic supplementary material
The online version of this article (doi:10.1007/s11060-008-9577-6) contains supplementary material, which is available to authorized users.
PMCID: PMC2440921  PMID: 18398575
Brain tumor; Pediatrics; qPCR; MAGE; NY-ESO-1; Immune target
12.  Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen 
Melanoma patients have high frequencies of T cells directed against antigens of their tumor. The frequency of these antitumor T cells in the blood is usually well above that of the anti-vaccine T cells observed after vaccination with tumor antigens. In a patient vaccinated with a MAGE-3 antigen presented by HLA-A1, we measured the frequencies of anti-vaccine and antitumor T cells in several metastases to evaluate their respective potential contribution to tumor rejection. The frequency of anti–MAGE-3.A1 T cells was 1.5 × 10−5 of CD8 T cells in an invaded lymph node, sixfold higher than in the blood. An antitumor cytotoxic T lymphocyte (CTL) recognizing a MAGE-C2 antigen showed a much higher enrichment with a frequency of ∼10%, 1,000 times higher than its blood frequency. Several other antitumor T clonotypes had frequencies >1%. Similar findings were made on a regressing cutaneous metastasis. Thus, antitumor T cells were ∼10,000 times more frequent than anti-vaccine T cells inside metastases, representing the majority of T cells present there. This suggests that the anti-vaccine CTLs are not the effectors that kill the bulk of the tumor cells, but that their interaction with the tumor generates conditions enabling the stimulation of large numbers of antitumor CTLs that proceed to destroy the tumor cells. Naive T cells appear to be stimulated in the course of this process as new antitumor clonotypes arise after vaccination.
PMCID: PMC2212799  PMID: 15657294
13.  A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia  
Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1–specific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virus–transformed B cells. The HB-1 gene–encoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1–specific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1–specific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD.
PMCID: PMC2192993  PMID: 9892612
bone marrow transplantation; cytotoxic T lymphocytes; minor histocompatibility antigens; B cell acute lymphoblastic leukemia; tumor immunity

Results 1-13 (13)