PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Recombinant Influenza Virus Carrying the Respiratory Syncytial Virus (RSV) F85-93 CTL Epitope Reduces RSV Replication in Mice 
Journal of Virology  2013;87(6):3314-3323.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants worldwide. Despite decades of research, there is still no registered vaccine available for this major pathogen. We investigated the protective efficacy of a recombinant influenza virus, PR8/NA-F85–93, that carries the RSV CD8+ T cell epitope F85–93 in its neuraminidase stalk. F85–93-specific cytotoxic T lymphocytes (CTLs) were induced in mice after a single intranasal immunization with PR8/NA-F85-93 virus, and these CTLs provided a significant reduction in the lung viral load upon a subsequent challenge with RSV. To avoid influenza-induced morbidity, we treated mice with matrix protein 2 (M2e)-specific monoclonal antibodies before PR8/NA-F85-93 virus infection. Treatment with anti-M2e antibodies reduced the infiltration of immune cells in the lungs upon PR8/NA-F85-93 infection, whereas the formation of inducible bronchus-associated lymphoid tissue was not affected. Moreover, this treatment prevented body weight loss yet still permitted the induction of RSV F-specific T cell responses and significantly reduced RSV replication upon challenge. These results demonstrate that it is possible to take advantage of the infection-permissive protection of M2e-specific antibodies against influenza A virus to induce heterologous CD8+ T cell-mediated immunity by an influenza A virus vector expressing the RSV F85-93 epitope.
doi:10.1128/JVI.03019-12
PMCID: PMC3592148  PMID: 23302879
2.  Correction: A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection 
PLoS Pathogens  2012;8(4):10.1371/annotation/a2136b9a-3cbf-426f-9cfb-73e3c9c6396d.
doi:10.1371/annotation/a2136b9a-3cbf-426f-9cfb-73e3c9c6396d
PMCID: PMC3319680
3.  A20 (Tnfaip3) Deficiency in Myeloid Cells Protects against Influenza A Virus Infection 
PLoS Pathogens  2012;8(3):e1002570.
The innate immune response provides the first line of defense against viruses and other pathogens by responding to specific microbial molecules. Influenza A virus (IAV) produces double-stranded RNA as an intermediate during the replication life cycle, which activates the intracellular pathogen recognition receptor RIG-I and induces the production of proinflammatory cytokines and antiviral interferon. Understanding the mechanisms that regulate innate immune responses to IAV and other viruses is of key importance to develop novel therapeutic strategies. Here we used myeloid cell specific A20 knockout mice to examine the role of the ubiquitin-editing protein A20 in the response of myeloid cells to IAV infection. A20 deficient macrophages were hyperresponsive to double stranded RNA and IAV infection, as illustrated by enhanced NF-κB and IRF3 activation, concomitant with increased production of proinflammatory cytokines, chemokines and type I interferon. In vivo this was associated with an increased number of alveolar macrophages and neutrophils in the lungs of IAV infected mice. Surprisingly, myeloid cell specific A20 knockout mice are protected against lethal IAV infection. These results challenge the general belief that an excessive host proinflammatory response is associated with IAV-induced lethality, and suggest that under certain conditions inhibition of A20 might be of interest in the management of IAV infections.
Author Summary
Influenza virus or flu epidemics represent a recurrent threat to the public health, especially for individuals which are part of a high-risk group such as children, elderly or immune-compromised people. Sporadic pandemic flu outbreaks, such as the Spanish flu of 1918, may cause high grades of mortality among healthy persons. A better understanding of how the immune system deals with these pathogens is of key importance. The protein A20 is an important negative regulator of both innate and adaptive immune responses. We show that the specific deletion of A20 in myeloid cells, such as macrophages and neutrophils, improves the resistance against otherwise lethal influenza infections. This protective effect is mediated by an enhanced innate immune response following respiratory challenge with influenza virus. Although exaggerated pulmonary immune responses are believed to be the primary cause of often life threatening influenza virus induced pneumonia, we demonstrate that boosting the innate immune response by selectively targeting the functionality of A20 in myeloid cells is beneficial for the host survival. This finding provides us with a novel valuable approach for treating influenza and potentially other respiratory viral infections.
doi:10.1371/journal.ppat.1002570
PMCID: PMC3291650  PMID: 22396652
4.  Disruption of the SapM locus in Mycobacterium bovis BCG improves its protective efficacy as a vaccine against M. tuberculosis 
EMBO Molecular Medicine  2011;3(4):222-234.
Mycobacterium bovis bacille Calmette-Guerin (BCG) provides only limited protection against pulmonary tuberculosis. We tested the hypothesis that BCG might have retained immunomodulatory properties from its pathogenic parent that limit its protective immunogenicity. Mutation of the molecules involved in immunomodulation might then improve its vaccine potential. We studied the vaccine potential of BCG mutants deficient in the secreted acid phosphatase, SapM, or in the capping of the immunomodulatory ManLAM cell wall component with α-1,2-oligomannoside. Both systemic and intratracheal challenge of mice with Mycobacterium tuberculosis following vaccination showed that the SapM mutant, compared to the parental BCG vaccine, provided better protection: it led to longer-term survival. Persistence of the SapM-mutated BCG in vivo resembled that of the parental BCG indicating that this mutation will likely not compromise the safety of the BCG vaccine. The SapM mutant BCG vaccine was more effective than the parental vaccine in inducing recruitment and activation of CD11c+MHC-IIintCD40int dendritic cells (DCs) to the draining lymph nodes. Thus, SapM acts by inhibiting recruitment of DCs and their activation at the site of vaccination.
doi:10.1002/emmm.201000125
PMCID: PMC3377067  PMID: 21328541
Mycobacterium; SapM; tuberculosis; vaccine; BCG
5.  Role for Neutrophils in Host Immune Responses and Genetic Factors That Modulate Resistance to Salmonella enterica Serovar Typhimurium in the Inbred Mouse Strain SPRET/Ei ▿  
Infection and Immunity  2010;78(9):3848-3860.
Infection with Salmonella enterica serovar Typhimurium is a complex disease in which the host-bacterium interactions are strongly influenced by genetic factors of the host. We demonstrate that SPRET/Ei, an inbred mouse strain derived from Mus spretus, is resistant to S. Typhimurium infections. The kinetics of bacterial proliferation, as well as histological examinations of tissue sections, suggest that SPRET/Ei mice can control bacterial multiplication and spreading despite significant attenuation of the cytokine response. The resistance of SPRET/Ei mice to S. Typhimurium infection is associated with increased leukocyte counts in the circulation and enhanced neutrophil influx into the peritoneum during the course of infection. A critical role of neutrophils was confirmed by neutrophil depletion: neutropenic SPRET/Ei mice were sensitive to infection with S. Typhimurium and showed much higher bacterial loads. To identify genes that modulate the natural resistance of SPRET/Ei mice to S. Typhimurium infection, we performed a genome-wide study using an interspecific backcross between C3H/HeN and SPRET/Ei mice. The results of this analysis demonstrate that at least two loci, located on chromosomes 6 and 11, affect survival following lethal infection with S. Typhimurium. These two loci contain several interesting candidate genes which may have important implications for the search for genetic factors controlling Salmonella infections in humans and for our understanding of complex host-pathogen interactions in general.
doi:10.1128/IAI.00044-10
PMCID: PMC2937467  PMID: 20643856
6.  The Transcriptional Repressor Kaiso Localizes at the Mitotic Spindle and Is a Constituent of the Pericentriolar Material 
PLoS ONE  2010;5(2):e9203.
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
doi:10.1371/journal.pone.0009203
PMCID: PMC2821401  PMID: 20169156

Results 1-6 (6)