PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  GATA3-Driven Th2 Responses Inhibit TGF-β1–Induced FOXP3 Expression and the Formation of Regulatory T Cells 
PLoS Biology  2007;5(12):e329.
Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-β–mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy.
Author Summary
Specific immune responses against foreign or autologous antigens are driven by specialized epitope-specific T cells, whose numbers expand upon recognition of antigen found on professional antigen-presenting cells. The subsequent maturation process involves the differentiation of certain T cell phenotypes such as pro-inflammatory cells (Th1, Th2, Th17) or regulatory T (Treg) cells, which serve to keep the immune response in check. The current study focuses on the role of two key transcription factors—FOXP3 and GATA3—in controlling the commitment of these cells. We demonstrate that the Th2 cytokine IL-4 inhibits the induction of FOXP3 and thus inhibits the generation of inducible Treg cells. We show that IL-4–induced GATA3 mediates FOXP3 inhibition by directly binding to a GATA element in the FOXP3 promoter. We hypothesize that therapeutic agents aimed at neutralizing IL-4 could be a novel strategy to facilitate inducible Treg cell generation and thus promotion of tolerance in allergies and other Th2-dominated diseases.
It is shown that Th2 responses prevent the generation of inducible Tregs. This is mediated by IL-4 induction of GATA3, which binds directly to and represses the FOXP3 promoter. This mechanism is likely to be relevant in the induction of immunotolerance, particularly in allergic diseases.
doi:10.1371/journal.pbio.0050329
PMCID: PMC2222968  PMID: 18162042
2.  Immune Responses in Healthy and Allergic Individuals Are Characterized by a Fine Balance between Allergen-specific T Regulatory 1 and T Helper 2 Cells 
The Journal of Experimental Medicine  2004;199(11):1567-1575.
The mechanisms by which immune responses to nonpathogenic environmental antigens lead to either allergy or nonharmful immunity are unknown. Single allergen-specific T cells constitute a very small fraction of the whole CD4+ T cell repertoire and can be isolated from the peripheral blood of humans according to their cytokine profile. Freshly purified interferon-γ–, interleukin (IL)-4–, and IL-10–producing allergen-specific CD4+ T cells display characteristics of T helper cell (Th)1-, Th2-, and T regulatory (Tr)1–like cells, respectively. Tr1 cells consistently represent the dominant subset specific for common environmental allergens in healthy individuals; in contrast, there is a high frequency of allergen-specific IL-4–secreting T cells in allergic individuals. Tr1 cells use multiple suppressive mechanisms, IL-10 and TGF-β as secreted cytokines, and cytotoxic T lymphocyte antigen 4 and programmed death 1 as surface molecules. Healthy and allergic individuals exhibit all three allergen-specific subsets in different proportions, indicating that a change in the dominant subset may lead to allergy development or recovery. Accordingly, blocking the suppressor activity of Tr1 cells or increasing Th2 cell frequency enhances allergen-specific Th2 cell activation ex vivo. These results indicate that the balance between allergen-specific Tr1 cells and Th2 cells may be decisive in the development of allergy.
doi:10.1084/jem.20032058
PMCID: PMC2211782  PMID: 15173208
peripheral tolerance; allergens; suppression; interleukins; immune regulation
3.  T cell–mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis 
Clinical and histologic similarities between various eczematous disorders point to a common efferent pathway. We demonstrate here that activated T cells infiltrating the skin in atopic dermatitis (AD) and allergic contact dermatitis (ACD) induce keratinocyte (KC) apoptosis. KCs normally express low levels of Fas receptor (FasR) that can be substantially enhanced by the presence of IFN-γ. KCs are rendered susceptible to apoptosis by IFN-γ when FasR numbers reach a threshold of approximately 40,000 per KC. Subsequently, KCs undergo apoptosis induced by anti-FasR mAb’s, soluble Fas ligand, supernatants from activated T cells, or direct contact between T cells and KCs. Apoptotic KCs show typical DNA fragmentation and membrane phosphatidylserine expression. KC apoptosis was demonstrated in situ in lesional skin affected by AD, ACD, and patch tests. Using numerous cytokines and anti-cytokine neutralizing mAb’s, we found no evidence that cytokines other than IFN-γ participate in this process. In addition, apoptosis-inducing pathways other than FasR triggering were ruled out by blocking T cell–induced KC apoptosis by caspase inhibitors and soluble Fas-Fc protein. Responses of normal human skin and cultured skin equivalents to activated T cells demonstrated that KC apoptosis caused by skin-infiltrating T cells is a key event in the pathogenesis of eczematous dermatitis.
PMCID: PMC517909  PMID: 10880045
4.  Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein  
The Journal of Experimental Medicine  1999;189(9):1507-1512.
A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy.
PMCID: PMC2193053  PMID: 10224291
phage display; cDNA libraries; IgE; allergens; autoimmunity
5.  Disruption of Fas Receptor Signaling by Nitric Oxide in Eosinophils  
It has been suggested that Fas ligand–Fas receptor interactions are involved in the regulation of eosinophil apoptosis and that dysfunctions in this system could contribute to the accumulation of these cells in allergic and asthmatic diseases. Here, we demonstrate that nitric oxide (NO) specifically prevents Fas receptor–mediated apoptosis in freshly isolated human eosinophils. In contrast, rapid acceleration of eosinophil apoptosis by activation of the Fas receptor occurs in the presence of eosinophil hematopoietins. Analysis of the intracellular mechanisms revealed that NO disrupts Fas receptor–mediated signaling events at the level of, or proximal to, Jun kinase (JNK), but distal to sphingomyelinase (SMase) activation and ceramide generation. In addition, activation of SMase occurs downstream of an interleukin 1 converting enzyme–like (ICE-like) protease(s) that is not blocked by NO. However, NO prevents activation of a protease that targets lamin B1. These findings suggest a role for an additional NO-sensitive apoptotic signaling pathway that amplifies the proteolytic cascade initialized by activation of the Fas receptor. Therefore, NO concentrations within allergic inflammatory sites may be important in determining whether an eosinophil survives or undergoes apoptosis upon Fas ligand stimulation.
PMCID: PMC2212112  PMID: 9449721

Results 1-5 (5)