PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line 
Viruses  2014;6(11):4398-4421.
The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrPC, into an aberrant and partially proteinase K resistant isoform, PrPSc. Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK), as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.
doi:10.3390/v6114398
PMCID: PMC4246229  PMID: 25402173
prion; fish; cross-species transmission; cell culture; ScN2a
2.  Perspectives of a scrapie resistance breeding scheme targeting Q211, S146 and K222 caprine PRNP alleles in Greek goats 
Veterinary Research  2014;45(1):43.
The present study investigates the potential use of the scrapie-protective Q211 S146 and K222 caprine PRNP alleles as targets for selective breeding in Greek goats. Genotyping data from a high number of healthy goats with special emphasis on bucks, revealed high frequencies of these alleles, while the estimated probabilities of disease occurrence in animals carrying these alleles were low, suggesting that they can be used for selection. Greek goats represent one of the largest populations in Europe. Thus, the considerations presented here are an example of the expected effect of such a scheme on scrapie occurrence and on stakeholders.
doi:10.1186/1297-9716-45-43
PMCID: PMC4030296  PMID: 24717012
3.  Inhibition of PrPSc formation in scrapie infected N2a cells by 5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine derivatives 
Prion  2012;6(5):470-476.
Prion diseases are fatal, neurodegenerative diseases characterized by the structural conversion of the normal, cellular prion protein, PrPC into an abnormally structured, aggregated and partially protease-resistant isoform, termed PrPSc. Although substantial research has been directed toward development of therapeutics targeting prions, there is still no curative treatment for the disease. Benzoxazines are bicyclic heterocyclic compounds possessing several pharmaceutically important properties, including neuroprotection and reactive oxygen species scavenging. In an effort to identify novel inhibitors of prion formation, several 5,7,8-trimethyl-1,4-benzoxazine derivatives were evaluated in vitro for their effectiveness on the expression levels of normal PrPC and its conversion to the abnormal isoforms of PrPSc in a scrapie-infected cell culture model. The most potent compound was 2-(4-methoxyphenyl)-5,7,8-trimethyl-3,4-dihydro-2H-1,4-benzoxazine, with a diminishing effect on the formation of PrPSc, thus establishing a class of compounds with a promising therapeutic use against prion diseases.
doi:10.4161/pri.21913
PMCID: PMC3510853  PMID: 22918434
transmissible spongiform encephalopathies; prion protein; benzoxazines; drug screening; scrapie N2a cells
4.  Immunization with Recombinant Prion Protein Leads to Partial Protection in a Murine Model of TSEs through a Novel Mechanism 
PLoS ONE  2013;8(3):e59143.
Transmissible spongiform encephalopathies are neurodegenerative diseases, which despite fervent research remain incurable. Immunization approaches have shown great potential at providing protection, however tolerance effects hamper active immunization protocols. In this study we evaluated the antigenic potential of various forms of recombinant murine prion protein and estimated their protective efficacy in a mouse model of prion diseases. One of the forms tested provided a significant elongation of survival interval. The elongation was mediated via an acute depletion of mature follicular dendritic cells, which are associated with propagation of the prion infectious agent in the periphery and in part to the development of humoral immunity against prion protein. This unprecedented result could offer new strategies for protection against transmissible encephalopathies as well as other diseases associated with follicular dendritic cells.
doi:10.1371/journal.pone.0059143
PMCID: PMC3598700  PMID: 23554984
5.  Evaluation of the Possible Transmission of BSE and Scrapie to Gilthead Sea Bream (Sparus aurata) 
PLoS ONE  2009;4(7):e6175.
In transmissible spongiform encephalopathies (TSEs), a group of fatal neurodegenerative disorders affecting many species, the key event in disease pathogenesis is the accumulation of an abnormal conformational isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). While the precise mechanism of the PrPC to PrPSc conversion is not understood, it is clear that host PrPC expression is a prerequisite for effective infectious prion propagation. Although there have been many studies on TSEs in mammalian species, little is known about TSE pathogenesis in fish. Here we show that while gilthead sea bream (Sparus aurata) orally challenged with brain homogenates prepared either from a BSE infected cow or from scrapie infected sheep developed no clinical prion disease, the brains of TSE-fed fish sampled two years after challenge did show signs of neurodegeneration and accumulation of deposits that reacted positively with antibodies raised against sea bream PrP. The control groups, fed with brains from uninfected animals, showed no such signs. Remarkably, the deposits developed much more rapidly and extensively in fish inoculated with BSE-infected material than in the ones challenged with the scrapie-infected brain homogenate, with numerous deposits being proteinase K-resistant. These plaque-like aggregates exhibited congophilia and birefringence in polarized light, consistent with an amyloid-like component. The neurodegeneration and abnormal deposition in the brains of fish challenged with prion, especially BSE, raises concerns about the potential risk to public health. As fish aquaculture is an economically important industry providing high protein nutrition for humans and other mammalian species, the prospect of farmed fish being contaminated with infectious mammalian PrPSc, or of a prion disease developing in farmed fish is alarming and requires further evaluation.
doi:10.1371/journal.pone.0006175
PMCID: PMC2712096  PMID: 19636413
6.  State-of-the-art review of goat TSE in the European Union, with special emphasis on PRNP genetics and epidemiology 
Veterinary Research  2009;40(5):48.
Scrapie is a fatal, neurodegenerative disease of sheep and goats. It is also the earliest known member in the family of diseases classified as transmissible spongiform encephalopathies (TSE) or prion diseases, which includes Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE), and chronic wasting disease in cervids. The recent revelation of naturally occurring BSE in a goat has brought the issue of TSE in goats to the attention of the public. In contrast to scrapie, BSE presents a proven risk to humans. The risk of goat BSE, however, is difficult to evaluate, as our knowledge of TSE in goats is limited. Natural caprine scrapie has been discovered throughout Europe, with reported cases generally being greatest in countries with the highest goat populations. As with sheep scrapie, susceptibility and incubation period duration of goat scrapie are most likely controlled by the prion protein (PrP) gene (PRNP). Like the PRNP of sheep, the caprine PRNP shows significantly greater variability than that of cattle and humans. Although PRNP variability in goats differs from that observed in sheep, the two species share several identical alleles. Moreover, while the ARR allele associated with enhancing resistance in sheep is not present in the goat PRNP, there is evidence for the existence of other PrP variants related to resistance. This review presents the current knowledge of the epidemiology of caprine scrapie within the major European goat populations, and compiles the current data on genetic variability of PRNP.
doi:10.1051/vetres/2009031
PMCID: PMC2704333  PMID: 19505422
transmissible spongiform encephalopathy; prion protein; genetics; goat; scrapie
7.  Species and Strain Glycosylation Patterns of PrPSc 
PLoS ONE  2009;4(5):e5633.
Background
A key event in transmissible spongiform encephalopathies (TSEs) is the conversion of the soluble, protease-sensitive glycosylated prion protein (PrPC) to an abnormally structured, aggregated and partially protease-resistant isoform (PrPSc). Both PrP isoforms bear two potential glycosylation sites and thus in a typical western blot with an anti-PrP antibody three distinct bands appear, corresponding to the di-, mono- or unglycosylated forms of the protein. The relative intensity and electrophoretic mobility of the three bands are characteristic of each TSE strain and have been used to discriminate between them.
Methodology/Principal Findings
In the present study we used lectin-based western blotting to evaluate possible variations in composition within sugar chains carried by PrPSc purified from subjects affected with different TSEs. Our findings indicate that in addition to the already well-documented differences in electrophoretic mobility and amounts of the glycosylated PrPSc forms, TSE strains also vary in the abundance of specific N-linked sugars of the PrPSc protein.
Conclusions/Significance
These results imply that PrP glycosylation might fine-tune the conversion of PrPC to PrPSc and could play an accessory role in the appearance of some of the characteristic features of TSE strains. The differences in sugar composition could also be used as an additional tool for discrimination between the various TSEs.
doi:10.1371/journal.pone.0005633
PMCID: PMC2680983  PMID: 19461968
8.  Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies 
Journal of Neurology  2009;256(10):1620-1628.
The 14-3-3 protein test has been shown to support the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) when associated with an adequate clinical context, and a high differential potential for the diagnosis of sporadic CJD has been attributed to other cerebrospinal fluid (CSF) proteins such as tau protein, S100b and neuron specific enolase (NSE). So far there has been only limited information available about biochemical markers in genetic transmissible spongiform encephalopathies (gTSE), although they represent 10–15% of human TSEs. In this study, we analyzed CSF of 174 patients with gTSEs for 14-3-3 (n = 166), tau protein (n = 78), S100b (n = 46) and NSE (n = 50). Levels of brain-derived proteins in CSF varied in different forms of gTSE. Biomarkers were found positive in the majority of gCJD (81%) and insert gTSE (69%), while they were negative in most cases of fatal familial insomnia (13%) and Gerstmann-Sträussler-Scheinker syndrome (10%). Disease duration and codon 129 genotype influence the findings in a different way than in sporadic CJD.
doi:10.1007/s00415-009-5163-x
PMCID: PMC3085782  PMID: 19444528
Creutzfeldt-Jakob disease; CSF proteins; 14-3-3 protein; Tau
9.  Novel mutation of the PRNP gene of a clinical CJD case 
Background
Transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases, are thought to be caused by an abnormal isoform of a naturally occurring protein known as cellular prion protein, PrPC. The abnormal form of prion protein, PrPSc accumulates in the brain of affected individuals. Both isoforms are encoded by the same prion protein gene (PRNP), and the structural changes occur post-translationally. Certain mutations in the PRNP gene result in genetic TSEs or increased susceptibility to TSEs.
Case presentation
A 70 year old woman was admitted to the hospital with severe confusion and inability to walk. Relatives recognized memory loss, gait and behavioral disturbances over a six month period prior to hospitalization. Neurological examination revealed Creutzfeldt-Jakob disease (CJD) related symptoms such as incontinence, Babinski sign and myoclonus. EEG showed periodic sharp waves typical of sporadic CJD and cerebrospinal fluid analysis (CSF) was positive for the presence of the 14-3-3-protein. As the disease progressed the patient developed akinetic mutism and died in the tenth month after onset of the disease symptoms. Unfortunately, no autopsy material was available. PRNP sequencing showed the occurrence of a point mutation on one allele at codon 193, which is altered from ACC, coding for a threonine, to ATC, encoding an isoleucine (T193I).
Conclusion
Here we report a novel mutation of the PRNP gene found in an elderly female patient resulting in heterozygosity for isoleucine and threonine at codon 193, in which normally homozygosity for threonine is expected (T193). The patient presented typical clinical symptoms of CJD. EEG findings and the presence of the 14-3-3 protein in the CSF, contributed to CJD diagnosis, allowing the classification of this case as a probable CJD according to the World Health Organization (WHO) accepted criteria.
doi:10.1186/1471-2334-6-169
PMCID: PMC1693557  PMID: 17129366
10.  A short purification process for quantitative isolation of PrPSc from naturally occurring and experimental transmissible spongiform encephalopathies 
Background
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases affecting both humans and animals. They are associated with post-translational conversion of the normal cellular prion protein (PrPC) into a heat- and protease-resistant abnormal isoform (PrPSc). Detection of PrPSc in individuals is widely utilized for the diagnosis of prion diseases.
Methods
TSE brain tissue samples have been processed in order to quantitatively isolate PrPSc. The protocol includes an initial homogenization, digestion with proteinase K and salt precipitation.
Results
Here we show that over 97 percent of the PrPSc present can be precipitated from infected brain material using this simple salting-out procedure for proteins. No chemically harsh conditions are used during the process in order to conserve the native quality of the isolated protein.
Conclusion
The resulting PrPSc-enriched preparation should provide a suitable substrate for analyzing the structure of the prion agent and for scavenging for other molecules with which it may associate. In comparison with most methods that exist today, the one described in this study is rapid, cost-effective and does not demand expensive laboratory equipment.
doi:10.1186/1471-2334-2-23
PMCID: PMC134455  PMID: 12370086

Results 1-10 (10)