Search tips
Search criteria

Results 1-25 (48)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease 
The New England journal of medicine  2014;371(6):530-539.
Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrPSc). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt–Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt–Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating.
To investigate whether PrPSc can be detected in the urine of patients with variant Creutzfeldt–Jakob disease, we used the protein misfolding cyclic amplification (PMCA) technique to amplify minute quantities of PrPSc, enabling highly sensitive detection of the protein. We analyzed urine samples from several patients with various transmissible spongiform encephalopathies (variant and sporadic Creutzfeldt–Jakob disease and genetic forms of prion disease), patients with other degenerative or nondegenerative neurologic disorders, and healthy persons.
PrPSc was detectable only in the urine of patients with variant Creutzfeldt–Jakob disease and had the typical electrophoretic profile associated with this disease. PrPSc was detected in 13 of 14 urine samples obtained from patients with variant Creutzfeldt–Jakob disease and in none of the 224 urine samples obtained from patients with other neurologic diseases and from healthy controls, resulting in an estimated sensitivity of 92.9% (95% confidence interval [CI], 66.1 to 99.8) and a specificity of 100.0% (95% CI, 98.4 to 100.0). The PrPSc concentration in urine calculated by means of quantitative PMCA was estimated at 1×10−16 g per milliliter, or 3×10−21 mol per milliliter, which extrapolates to approximately 40 to 100 oligomeric particles of PrPSc per milliliter of urine.
Urine samples obtained from patients with variant Creutzfeldt–Jakob disease contained minute quantities of PrPSc. (Funded by the National Institutes of Health and others.)
PMCID: PMC4162740  PMID: 25099577
2.  Variably Protease-Sensitive Prionopathy, a Unique Prion Variant with Inefficient Transmission Properties 
Emerging Infectious Diseases  2014;20(12):1969-1979.
Transmission properties of this prion disease are biologically distinct, and the disease has limited potential for human-to-human transmission.
Variably protease-sensitive prionopathy (VPSPr) can occur in persons of all codon 129 genotypes in the human prion protein gene (PRNP) and is characterized by a unique biochemical profile when compared with other human prion diseases. We investigated transmission properties of VPSPr by inoculating transgenic mice expressing human PRNP with brain tissue from 2 persons with the valine-homozygous (VV) and 1 with the heterozygous methionine/valine codon 129 genotype. No clinical signs or vacuolar pathology were observed in any inoculated mice. Small deposits of prion protein accumulated in the brains of inoculated mice after challenge with brain material from VV VPSPr patients. Some of these deposits resembled microplaques that occur in the brains of VPSPr patients. Comparison of these transmission properties with those of sporadic Creutzfeldt-Jakob disease in the same lines of mice indicated that VPSPr has distinct biological properties. Moreover, we established that VPSPr has limited potential for human-to-human transmission.
PMCID: PMC4257789  PMID: 25418327
prion; variably protease-sensitive prionopathy; VPSPr; sporadic Creutzfeldt-Jakob disease; sCJD; transmissible spongiform encephalopathy; TSE; prion protein; human prion disease; human-to-human transmission; prions and related diseases
3.  GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation 
Cell Cycle  2013;12(22):3564-3573.
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP. Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis.
PMCID: PMC3906342  PMID: 24121663
p73; GLS2; neuronal differentiation; apoptosis; p53 family; metabolism; neurotransmitter
4.  TAp73 promotes anti-senescence-anabolism not proliferation 
Aging (Albany NY)  2014;6(11):921-930.
TAp73, a member of the p53 family, has been traditionally considered a tumor suppressor gene, but a recent report has claimed that it can promote cellular proliferation. This assumption is based on biochemical evidence of activation of anabolic metabolism, with enhanced pentose phosphate shunt (PPP) and nucleotide biosynthesis. Here, while we confirm that TAp73 expression enhances anabolism, we also substantiate its role in inhibiting proliferation and promoting cell death. Hence, we would like to propose an alternative interpretation of the accumulating data linking p73 to cellular metabolism: we suggest that TAp73 promotes anabolism to counteract cellular senescence rather than to support proliferation.
PMCID: PMC4276786  PMID: 25554796
p73; p53 family; senescence; aging; metabolism; apotosis; cancer
5.  Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune Globulin 
Journal of Transplantation  2014;2014:342319.
Ganciclovir-resistant cytomegalovirus (CMV) is associated with significant morbidity in solid organ transplant recipients. Management of ganciclovir-resistant CMV may be complicated by nephrotoxicity which is commonly observed with recommended therapies and/or rejection induced by “indirect” viral effects or reduction of immunosuppression. Herein, we report a series of four high serologic risk (donor CMV positive/recipient CMV negative) kidney transplant patients diagnosed with ganciclovir-resistant CMV disease. All patients initially developed “breakthrough” viremia while still receiving valganciclovir prophylaxis after transplant and were later confirmed to exhibit UL97 mutations after failing to eradicate virus on adequate dosages of valganciclovir. The patients were subsequently and successfully treated with reduced-dose (1-2 mg/kg) cidofovir and CMV-hyperimmune globulin, given in 2-week intervals. In addition, all patients exhibited stable renal function after completion of therapy, and none experienced acute rejection. The combination of reduced-dose cidofovir and CMV-hyperimmune globulin appeared to be a safe and effective regimen in patients with mild disease due to ganciclovir-resistant CMV.
PMCID: PMC4058803  PMID: 24991428
6.  Large scale integration of drug-target information reveals poly-pharmacological drug action mechanisms in tumor cell line growth inhibition assays 
Oncotarget  2014;5(3):659-666.
Understanding therapeutic mechanisms of drug anticancer cytotoxicity represents a key challenge in preclinical testing. Here we have performed a meta-analysis of publicly available tumor cell line growth inhibition assays (~ 70 assays from 6 independent experimental groups covering ~ 500 000 molecules) with the primary goal of understanding molecular therapeutic mechanisms of cancer cytotoxicity. To implement this we have collected currently available information on protein targets for molecules that were tested in the assays. We used a statistical methodology to identify protein targets overrepresented among molecules exhibiting cancer cytotoxicity with the particular focus of identifying overrepresented patterns consisting of several proteins (i.e. proteins “A” and “B” and “C”). Our analysis demonstrates that targeting individual proteins can result in a significant increase (up to 50-fold) of the observed odds for a molecule to be an efficient inhibitor of tumour cell line growth. However, further insight into potential molecular mechanisms reveals a multi-target mode of action: targeting a pattern of several proteins drastically increases the observed odds (up to 500-fold) for a molecule to be tumour cytotoxic. In contrast, molecules targeting only one protein but not targeting an additional set of proteins tend to be nontoxic. Our findings support a poly-pharmacology drug discovery paradigm, demonstrating that anticancer cytotoxicity is a product, in most cases, of multi-target mode of drug action
PMCID: PMC3996666  PMID: 24553133
7.  miR-34: from bench to bedside 
Oncotarget  2014;5(4):872-881.
The mir-34 family was originally cloned and characterized in 2007 as a p53 target gene. Almost immediately it became clear that its major role is as a master regulator of tumor suppression. Indeed, when overexpressed, it directly and indirectly represses several oncogenes, resulting in an increase of cancer cell death (including cancer stem cells), and in an inhibition of metastasis. Moreover, its expression is deregulated in several human cancers. In 2013, a miR-34 mimic has become the first microRNA to reach phase 1 clinical trials. Here we review the miR-34 family and their role in tumor biology, and discuss the potential therapeutic applications of miR-34a mimic.
PMCID: PMC4011589  PMID: 24657911
microRNA; miR-34 family; cancer; therapy
8.  Molecular Barriers to Zoonotic Transmission of Prions 
Emerging Infectious Diseases  2014;20(1):88-97.
Chronic wasting disease in elk might be a threat to human health.
The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.
PMCID: PMC3884726  PMID: 24377702
prion disease; Creutzfeldt-Jakob disease; bovine spongiform encephalopathy; scrapie; CJD; BSE; chronic wasting disease; in vitro assay; cell-free system; protein misfolding diseases; prions; zoonoses
9.  Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers 
Oncotarget  2013;4(12):2577-2590.
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple cancers while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, gene ontology, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB, and FOXM1, and rely on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
PMCID: PMC3926850  PMID: 24342878
anti-oxidant genes; glutathione; thioredoxin; breast cancer; lung cancer; NRF2; G6PD
10.  Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy 
This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT).
Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system.
The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes.
This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.
PMCID: PMC4175818
Dosimetric quality; intensity modulated radiotherapy; prostate carcinoma; volumetric modulated arc therapy
11.  Splice site SNPs of phospholipase PLCXD3 are significantly associated with variant and sporadic Creutzfeldt-Jakob disease 
BMC Medical Genetics  2013;14:91.
Variant Creutzfeldt-Jakob disease is an infectious, neurodegenerative, protein-misfolding disease, of the prion disease family, originally acquired through ingestion of meat products contaminated with bovine spongiform encephalopathy (BSE). Public health concern was increased by the discovery of human-to-human transmission via blood transfusion. This study has verified a novel genetic marker linked to disease risk.
SNP imputation and association testing indicated those genes that had significant linkage to disease risk and one gene was investigated further with Sanger resequencing. Results from variant Creutzfeldt-Jakob disease were compared with those from sporadic (idiopathic) Creutzfeldt-Jakob disease and published controls.
The most significant disease risk, in addition to the prion protein gene, was for the phosphatidylinositol-specific phospholipase C, X domain containing 3 (PLCXD3) gene. Sanger resequencing of CJD patients across a region of PLCXD3 with known variants confirmed three SNPs associated with variant and sporadic CJD.
These data provide the first highly significant confirmation of SNP allele frequencies for a novel CJD candidate gene providing new avenues for investigating these neurodegenerative prion diseases. The phospholipase PLCXD3 is primarily expressed in the brain and is associated with lipid catabolism and signal transduction.
PMCID: PMC3847123  PMID: 24028506
Prion disease; Infection; Neurodegeneration; Susceptibility; Phospholipase
12.  RT-QuIC analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease 
Annals of neurology  2012;72(2):278-285.
Current cerebrospinal fluid (CSF) tests for sporadic Creutzfeldt-Jakob disease (sCJD) are based on the detection of surrogate markers of neuronal damage such as CSF 14-3-3 which are not specific for sCJD. A number of prion protein conversion assays have been developed, including real-time quaking induced conversion (RT-QuIC). The objective of this study is to investigate whether CSF RT-QuIC analysis could be used as a diagnostic test in sCJD.
An exploratory study was undertaken which analysed 108 CSF samples from patients with neuropathologically confirmed sCJD or from control patients. Of the 108 CSF samples 56 were from sCJD patients (30 female, 26 male, aged 31–84 years; 62.3 ± 13.5 years) and 52 were from control patients (26 female, 26 male, aged 43–84 years; 67.8 ± 10.4 years). A confirmatory group of 118 patients were subsequently examined which consisted of 67 cases of neuropathologically confirmed sCJD (33 female, 34 male, aged 39–82 years; 67.5 ± 9.0 years) and 51 control cases (26 female, 25 male, aged 36–87 years; 63.5 ± 11.6 years).
The exploratory study showed that RT-QuIC analysis had a sensitivity of 91% and a specificity of 98% for the diagnosis of sCJD. These results were confirmed in the confirmatory study which showed that CSF RT-QuIC analysis had a sensitivity and specificity of 87% and 100% respectively.
This study shows that CSF RT-QuIC analysis has the potential to be a more specific diagnostic test for sCJD than current CSF tests.
PMCID: PMC3458796  PMID: 22926858
13.  Signal transducer and activator of transcription-1 localizes to the mitochondria and modulates mitophagy 
JAK-STAT  2013;2(4):e25666.
The signal transducer and activator of transcription (STAT) proteins are latent transcription factors that have been shown to be involved in cell proliferation, development, apoptosis, and autophagy. STAT proteins undergo activation by phosphorylation at tyrosine 701 and serine 727 where they translocate to the nucleus to regulate gene expression. STAT1 has been shown to be involved in promoting apoptotic cell death in response to cardiac ischemia/reperfusion and has recently been shown by our laboratory to be involved in negatively regulating autophagy. These processes are thought to promote cell death and restrict cell survival leading to the generation of an infarct. Here we present data that shows STAT1 localizes to the mitochondria and co-immunoprecipitates with LC3. Furthermore, electron microscopy studies also reveal mitochondria from ex vivo I/R treated hearts of STAT1KO mice contained within a double membrane autophagosome indicating that STAT1 may be involved in negatively regulating mitophagy. This is the first description of STAT1 being localized to the mitochondria and also having a role in mitophagy.
PMCID: PMC3902047  PMID: 24470977
mitochondria; mitophagy; autophagy; autophagosome; heart; ischemia; reperfusion; STAT
14.  Treatment of Acute Tacrolimus Toxicity with Phenytoin in Solid Organ Transplant Recipients 
The pharmacokinetics of tacrolimus are influenced by many factors, including genetic variability, acute infections, liver dysfunction, and interacting medications, which can result in elevated concentrations. The most appropriate management of acute tacrolimus toxicity has not been defined though case reports exist describing the therapeutic use of enzyme inducers to increase tacrolimus metabolism and decrease concentrations. We are reporting on the utilization of phenytoin to assist in decreasing tacrolimus concentrations in a case series of four solid organ transplant recipients with acute, symptomatic tacrolimus toxicity presenting with elevated serum creatinine, potassium, and tacrolimus trough concentrations greater than 30 ng/mL. All four patients had the potential causative agents stopped or temporarily held and were given 300 to 400 mg/day of phenytoin for two to three days. Within three days of beginning phenytoin, all four patients had a decrease in tacrolimus concentration to less than 15 ng/mL, a return to or near baseline creatinine concentration, and lack of phenytoin-related side effects. Therefore, phenytoin appears to be a safe and potentially beneficial treatment option in patients with symptomatic tacrolimus toxicity.
PMCID: PMC3697147  PMID: 23844312
15.  The cardioprotective effects of urocortin are mediated via activation of the Src tyrosine kinase-STAT3 pathway 
JAK-STAT  2013;2(3):e24812.
Src tyrosine kinase family was recently identified as a novel upstream modulator of MAP kinase subfamily, p42/p44, whose activation is required for urocortin (Ucn)-mediated cardioprotection. Src kinase was also shown to reduce apoptosis in different cancer cell lines, enhancing phosphorylation and DNA binding affinity of signal transducer and activator of transcription (STAT)3. In order to evaluate the effects of Ucn on the activation status of different STAT family members, HL-1 cardiac cells were incubated with Ucn (10 nM) for increasing periods of time. STAT3 was rapidly phosphorylated at Tyr705, while neither phosphorylation at Ser727 nor induction of total STAT3 was observed. Pretreatment with PP2, a selective inhibitor of Src tyrosine kinase, reduced the pSTAT−T705 phosphorylation and transcriptional activity induced by Ucn in a dose-dependent manner. Overexpression of STAT3 in HL-1 cardiac myocytes pretreated with Ucn reduced the magnitude of cell death as compared with Ucn treatment alone, while transfection of HL-1 cells with a STAT3 mutant functionally inactive, acting as a dominant negative (DN-STAT3), enhanced the extent of cell death in a dose-dependent manner. In line with this finding, in HL-1 cardiac myocytes overexpressing STAT3 treated with Ucn, addition of the Src kinase inhibitor PP2 reversed the cytoprotective effects of Ucn, proving that the cytoprotective effects of Ucn are also mediated via the Src-pSTAT−T705 phosphorylation pathway. By immunocytochemistry, Ucn induced nuclear translocation of pST3-T705, which was inhibited by pretreatment with PP2. Together, these data strongly suggest that Ucn can mediate cardioprotection by activating the Src-pSTAT-T705 phosphorylation pathway.
PMCID: PMC3772114  PMID: 24069562
STAT3; cardioprotection; ischemia/reperfusion injury; signal transduction; urocortin
16.  miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration 
The Journal of Cell Biology  2012;199(2):347-363.
A differentiation-promoting micro-RNA regulates actin cable dynamics, intercellular adhesion, and cell migration in human and mouse epidermis.
During keratinocyte differentiation and stratification, cells undergo extensive remodeling of their actin cytoskeleton, which is important to control cell mobility and to coordinate and stabilize adhesive structures necessary for functional epithelia. Limited knowledge exists on how the actin cytoskeleton is remodeled in epithelial stratification and whether cell shape is a key determinant to trigger terminal differentiation. In this paper, using human keratinocytes and mouse epidermis as models, we implicate miR-24 in actin adhesion dynamics and demonstrate that miR-24 directly controls actin cable formation and cell mobility. miR-24 overexpression in proliferating cells was sufficient to trigger keratinocyte differentiation both in vitro and in vivo and directly repressed cytoskeletal modulators (PAK4, Tks5, and ArhGAP19). Silencing of these targets recapitulated the effects of miR-24 overexpression. Our results uncover a new regulatory pathway involving a differentiation-promoting microribonucleic acid that regulates actin adhesion dynamics in human and mouse epidermis.
PMCID: PMC3471232  PMID: 23071155
17.  Enhanced IL-17 signalling following myocardial ischaemia/reperfusion injury 
International Journal of Cardiology  2013;163(3):326-334.
IL-17A and IL-17F are pro-inflammatory cytokines which induce the expression of several cytokines, chemokines and matrix metalloproteinases (MMPs) in target cells. IL-17 cytokines have recently attracted huge interest due to their pathogenic role in diseases such as arthritis and inflammatory bowel disease although a role for IL-17 cytokines in myocardial infarction (MI) has not previously been described.
In vivo MI was performed by coronary artery occlusion in the absence or presence of a neutralizing IL-17 antibody for blocking IL-17 actions in vivo. IL-17 signaling was also assessed in isolated primary cardiomyocytes by Western blot, mRNA expression and immunostaining.
Expression of IL-17A, IL-17F and the IL-17 receptor (IL-17RA) were all increased following MI. Expression of several IL-17 target genes, including Cxcl1, Cxcl2, IL-1β, iNOS and IL-6 was also upregulated following MI. In addition, IL-17A promoted the expression of Cxcl1 and IL-6 in isolated cardiomyocytes in a MAPK and PI(3)K-dependent manner. IL-17A and ischaemia/reperfusion (I/R) injury were found to have an additive effect on Cxcl1 expression, suggesting that IL-17 may enhance myocardial neutrophil recruitment during MI. Moreover, protein levels of both IL-17R and IL-17A were enhanced following in vivo MI. Finally, blocking IL-17 signaling in vivo reduced the levels of apoptotic cell death markers following in vivo MI.
These data imply that the expression of IL-17 cytokines and their receptor are elevated during myocardial I/R injury and may play a fundamental role in post infarct inflammatory and apoptotic responses.
PMCID: PMC3581775  PMID: 22030025
IL-17; Myocardial; Ischaemia/reperfusion; IL-17 receptor; Cxcl1; MAPK
18.  Sensitive and specific detection of sporadic Creutzfeldt–Jakob disease brain prion protein using real-time quaking-induced conversion 
The Journal of General Virology  2012;93(Pt 2):438-449.
Real-time quaking-induced conversion (RT-QuIC) is an assay in which disease-associated prion protein (PrP) initiates a rapid conformational transition in recombinant PrP (recPrP), resulting in the formation of amyloid that can be monitored in real time using the dye thioflavin T. It therefore has potential advantages over analogous cell-free PrP conversion assays such as protein misfolding cyclic amplification (PMCA). The QuIC assay and the related amyloid seeding assay have been developed largely using rodent-passaged sheep scrapie strains. Given the potential RT-QuIC has for Creutzfeldt–Jakob disease (CJD) research and human prion test development, this study characterized the behaviour of a range of CJD brain specimens with hamster and human recPrP in the RT-QuIC assay. The results showed that RT-QuIC is a rapid, sensitive and specific test for the form of abnormal PrP found in the most commonly occurring forms of sporadic CJD. The assay appeared to be largely independent of species-related sequence differences between human and hamster recPrP and of the methionine/valine polymorphism at codon 129 of the human PrP gene. However, with the same conditions and substrate, the assay was less efficient in detecting the abnormal PrP that characterizes variant CJD brain. Comparison of these QuIC results with those previously obtained using PMCA suggested that these two seemingly similar assays differ in important respects.
PMCID: PMC3352348  PMID: 22031526
19.  NRF2 and p53: Januses in cancer? 
Oncotarget  2012;3(11):1272-1283.
The transcription factor nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 or NRF2, is a master regulator of the anti-oxidative stress response and positively controls the expression of a battery of anti-oxidative stress response proteins and enzymes implicated in detoxification and glutathione generation. Although its detoxifying activity is important in cancer prevention, it has recently been shown that cancer cells also exploit its protective functions to thrive and resist chemotherapy. NRF2 was also shown to the pentose phosphate pathway and glutaminolysis, which promotes purine synthesis for supporting rapid proliferation and glutathione for providing anti-oxidative stress protection. Evidence obtained from cancer patients and cell lines suggest that NRF2 is highly active in a variety of human cancers and is associated with aggressiveness. p53 is a tumor suppressor that also promotes an anti-oxidative stress metabolic program and glutaminolysis. Here we will discuss the similarities between NRF2 and p53 and review evidence that p53 might be exploited by cancer cells to gain protection against oxidative stress, as is the case for NRF2. We discuss findings of co-regulation between these transcription factors and propose possible therapeutic strategies that can be used for treatment of cancers that harbor WT p53 and express high levels of NRF2.
PMCID: PMC3717791  PMID: 23174755
P53; p73; TIGAR; p21; NQO1; NADPH; ROS; metabolism; proteasome; KEAP1; MDM2; chemotherapy; BSO; piperlongumine; BPTES; brusatol
20.  Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt–Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years 
Brain  2012;135(10):3051-3061.
To date, cerebrospinal fluid analysis, particularly protein 14-3-3 testing, presents an important approach in the identification of Creutzfeldt–Jakob disease cases. However, one special point of criticism of 14-3-3 testing is the specificity in the differential diagnosis of rapid dementia. The constant observation of increased cerebrospinal fluid referrals in the national surveillance centres over the last years raises the concern of declining specificity due to higher number of cerebrospinal fluid tests performed in various neurological conditions. Within the framework of a European Community supported longitudinal multicentre study (‘cerebrospinal fluid markers’) we analysed the spectrum of rapid progressive dementia diagnoses, their potential influence on 14-3-3 specificity as well as results of other dementia markers (tau, phosphorylated tau and amyloid-β1–42) and evaluated the specificity of 14-3-3 in Creutzfeldt–Jakob disease diagnosis for the years 1998–2008. A total of 29 022 cerebrospinal fluid samples were analysed for 14-3-3 protein and other cerebrospinal fluid dementia markers in patients with rapid dementia and suspected Creutzfeldt–Jakob disease in the participating centres. In 10 731 patients a definite diagnosis could be obtained. Protein 14-3-3 specificity was analysed for Creutzfeldt–Jakob disease with respect to increasing cerebrospinal fluid tests per year and spectrum of differential diagnosis. Ring trials were performed to ensure the comparability between centres during the reported time period. Protein 14-3-3 test specificity remained high and stable in the diagnosis of Creutzfeldt–Jakob disease during the observed time period across centres (total specificity 92%; when compared with patients with definite diagnoses only: specificity 90%). However, test specificity varied with respect to differential diagnosis. A high 14-3-3 specificity was obtained in differentiation to other neurodegenerative diseases (95–97%) and non-neurological conditions (91–97%). We observed lower specificity in the differential diagnoses of acute neurological diseases (82–87%). A marked and constant increase in cerebrospinal fluid test referrals per year in all centres did not influence 14-3-3 test specificity and no change in spectrum of differential diagnosis was observed. Cerebrospinal fluid protein 14-3-3 detection remains an important test in the diagnosis of Creutzfeldt–Jakob disease. Due to a loss in specificity in acute neurological events, the interpretation of positive 14-3-3 results needs to be performed in the clinical context. The spectrum of differential diagnosis of rapid progressive dementia varied from neurodegenerative dementias to dementia due to acute neurological conditions such as inflammatory diseases and non-neurological origin.
PMCID: PMC3470713  PMID: 23012332
rapid dementia; Creutzfeldt–Jakob disease; cerebrospinal fluid; 14-3-3; specificity; neurodegeneration; differential diagnosis in dementia
21.  Necroptosis 
JAK-STAT  2012;1(3):200-202.
TNF-induced necroptosis is caused by the activation of RIPK1 and the subsequent production of reactive oxygen species in the mitochondria, although the intermittent molecules of the signaling pathway responsible for this ROS-mediated type of programmed necrosis have not yet been identified. A recent article by Shulga and Pastorino in the Journal of Cell Science identifies RIPK1 as the mediator of STAT3 Ser727 phosphorylation, which leads to the translocation of the latter into the mitochondria via its interaction with GRIM-19, a member of the mitochondrial complex I. Here we discuss how the findings of the Shulga and Pastorino study shed light onto the involvement of STAT3 in necroptosis.
PMCID: PMC3670246  PMID: 24058772
necroptosis; STAT3; RIP1; GRIM-19; ROS production
22.  STAT transcription in the ischemic heart 
JAK-STAT  2012;1(2):111-117.
All seven STAT proteins are expressed in the heart, and in this review we will focus on their contribution to cardiac physiology and to ischemic heart disease and its consequences. A substantial literature has focused on the roles of STAT1 and STAT3 in ischemic heart disease, where, at least in the acute phase, they appear to have a yin-yang relationship. STAT1 contributes to the loss of irreplaceable cardiac myocytes both by increasing apoptosis and by reducing cardioprotective autophagy. In contrast, STAT3 is cardioprotective, since STAT3-deficient mice have larger infarcts following ischemic injury, and a number of cardioprotective agents have been shown to act, at least partly, through STAT3 activation. STAT3 is also absolutely required for preconditioning—a process where periods of brief ischemia protect against a subsequent or previous prolonged ischemic episode. Prolonged activation of STAT3, however, is strongly implicated in the post-infarction remodeling of the heart which leads to heart failure, where, possibly together with STAT5, it augments activation of the renin-angiotensin system.
PMCID: PMC3670290  PMID: 24058759
JAK; STAT1; STAT3; cardioprotection; hypertrophy; ischemia; myocardial infarction; preconditioning
23.  Relative expression of TAp73 and ΔNp73 isoforms 
Aging (Albany NY)  2012;4(3):202-205.
The transcription factor p73 belongs to the p53 family of tumour suppressors and similar to other family members, transcribed as different isoforms with opposing pro- and anti-apoptotic functions. Unlike p53, p73 mutations are extremely rare in cancers. Instead, the pro-apoptotic activities of transcriptionally active p73 isoforms are commonly inhibited by over-expression of the dominant negative p73 isoforms. Therefore the relative ratio of different p73 isoforms is critical for the cellular response to a chemotherapeutic agent. Here, we analysed the expression of N-terminal p73 isoforms in cell lines and mouse tissues. Our data showed that the transcriptionally competent TAp73 isoform is abundantly expressed in cancer cell lines compared to the dominant negative ΔNp73 isoform. Interestingly, we detected higher levels of ΔNp73 in some mouse tissues, suggesting that ΔNp73 may have a physiological role in these tissues.
PMCID: PMC3348480  PMID: 22388545
p73; alternative splicing; expression; cancer
24.  Development of Methods for Studying the Differentiation of Human Mesenchymal Stem Cells Under Cyclic Compressive Strain 
Human mesenchymal stem cells (hMSC) have numerous potential advantages over terminally differentiated cells and embryonic stem cells for use in tissue engineering applications. The aims of this study were to develop methods to test the hypothesis that hMSC could be differentiated using cyclic compressive strain alone. hMSC were successfully isolated, purified using D7-FIB antibody, cloned, and characterized. The cells were subsequently analyzed using fluorescence-activated cell sorting using a panel of antibodies and differentiation into multiple cell lineages. D7FIB-positive cells were then seeded into collagen–alginate scaffolds and subjected to 10% or 15% cyclic compressive strain for 4 out of 24 hours for up to 21 days in a bespoke servo-assisted displacement-controlled device. Cells were analyzed using adenosine triphosphate assay to determine cell number, live–dead cell assay, and quantitative real-time polymerase chain reaction at 7 and 21 days. Cloned D7-FIB-positive hMSCs showed evidence of differentiation to an osteogenic lineage under 10% cyclic compressive strain alone (core binding factor alpha 1 (CBFA-1) was significantly upregulated at 7 and 21 days by a factor of 18.3 and 32.2, respectively) and to an osteo-chondrogenic lineage under 15% cyclic compressive strain alone (increased expression of CBFA-1, Sox9, and aggrecan). A combination of a composite viscoelastic scaffold and controlled cyclic compressive strain may be useful for study of the differentiation of MSC.
PMCID: PMC3311877  PMID: 22047076
25.  The molecular epidemiology of variant CJD 
The emergence of the novel prion diseases bovine spongiform encephalopathy (BSE) and, subsequently, variant Creutzfeldt-Jakob disease (vCJD) in epidemic forms has attracted much scientific attention. The oral transmission of these disorders, the causative relationship of vCJD to BSE and the resistance of the transmissible agents in both disorders to conventional forms of decontamination has caused great public health concern. The size of the still emerging vCJD epidemic is thankfully much lower than some early published estimates. This paper reviews current knowledge of the factors that influence the development of vCJD: the properties of the infectious agent; the route of inoculation and individual susceptibility factors. The current epidemiological data are reviewed, along with relevant animal transmission studies. In terms of genetic susceptibility, the best characterised is the common single nucleotide polymorphism at codon 129 of prion protein gene. Current biomarkers and future areas of research will be discussed. These issues are important in informing precautionary measures and the ongoing monitoring of vCJD.
PMCID: PMC3166149  PMID: 21915360
Variant CJD; prion disease; BSE; transmission; environmental factors; susceptibility; genetic factors; investigations; biomarkers

Results 1-25 (48)