Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Antidiabetic Properties of Azardiracta indica and Bougainvillea spectabilis: In Vivo Studies in Murine Diabetes Model 
Diabetes mellitus is a metabolic syndrome characterized by an increase in the blood glucose level. Treatment of diabetes is complicated due to multifactorial nature of the disease. Azadirachta indica Adr. Juss and Bougainvillea spectabilis are reported to have medicinal values including antidiabetic properties. In the present study using invivo diabetic murine model, A. indica and B. spectabilis chloroform, methanolic and aqueous extracts were investigated for the biochemical parameters important for controlling diabetes. It was found that A. indica chloroform extract and B. spectabilis aqueous, methanolic extracts showed a good oral glucose tolerance and significantly reduced the intestinal glucosidase activity. Interestingly, A. indica chloroform and B. spectabilis aqueous extracts showed significant increase in glucose-6-phosphate dehydrogenase activity and hepatic, skeletal muscle glycogen content after 21 days of treatment. In immunohistochemical analysis, we observed a regeneration of insulin-producing cells and corresponding increase in the plasma insulin and c-peptide levels with the treatment of A. indica chloroform and B. spectabilis aqueous, methanolic extracts. Analyzing the results, it is clear that A. indica chloroform and B. spectabilis aqueous extracts are good candidates for developing new neutraceuticals treatment for diabetes.
PMCID: PMC3136679  PMID: 19389871
2.  Antidiabetic Indian Plants: A Good Source of Potent Amylase Inhibitors 
Diabetes is known as a multifactorial disease. The treatment of diabetes (Type II) is complicated due to the inherent patho-physiological factors related to this disease. One of the complications of diabetes is post-prandial hyperglycemia (PPHG). Glucosidase inhibitors, particularly α-amylase inhibitors are a class of compounds that helps in managing PPHG. Six ethno-botanically known plants having antidiabetic property namely, Azadirachta indica Adr. Juss.; Murraya koenigii (L.) Sprengel; Ocimum tenuflorum (L.) (syn: Sanctum); Syzygium cumini (L.) Skeels (syn: Eugenia jambolana); Linum usitatissimum (L.) and Bougainvillea spectabilis were tested for their ability to inhibit glucosidase activity. The chloroform, methanol and aqueous extracts were prepared sequentially from either leaves or seeds of these plants. It was observed that the chloroform extract of O. tenuflorum; B. spectabilis; M. koenigii and S. cumini have significant α-amylase inhibitory property. Plants extracts were further tested against murine pancreatic, liver and small intestinal crude enzyme preparations for glucosidase inhibitory activity. The three extracts of O. tenuflorum and chloroform extract of M. koenigi showed good inhibition of murine pancreatic and intestinal glucosidases as compared with acarbose, a known glucosidase inhibitor.
PMCID: PMC3137644  PMID: 18955350
3.  Antidiabetic Activity of Gnidia glauca and Dioscorea bulbifera: Potent Amylase and Glucosidase Inhibitors 
Diabetes is a metabolic disorder affecting about 220 million people worldwide. One of the most critical complications of diabetes is post-prandial hyper-glycemia (PPHG). Glucosidase inhibitor and α-amylase inhibitors are class of compounds that help in managing PPHG. Low-cost herbal treatment is recommended due to their lesser side effect for treatment of diabetes. Two plants with significant traditional therapeutic potential, namely, Gnidia glauca and Dioscorea bulbifera, were tested for their efficiency to inhibit α-amylase and α-glucosidase. Stem, leaf, and flower of G. glauca and bulb of D. bulbifera were sequentially extracted with petroleum ether, ethyl acetate, and methanol as well as separately with 70% ethanol. Petroleum ether extract of flower of G. glauca was found to inhibit α-amylase significantly (78.56%). Extracts were further tested against crude murine pancreatic, small intestinal, and liver glucosidase enzyme which revealed excellent inhibitory properties. α-glucosidase inhibition provided a strong in vitro evidence for confirmation of both G. glauca and D. bulbifera as excellent antidiabetic remedy. This is the first report of its kind that provides a strong biochemical basis for management of type II diabetes using G. glauca and D. bulbifera. These results provide intense rationale for further in vivo and clinical study.
PMCID: PMC3140190  PMID: 21785651
4.  CD40 Signaling Is Impaired in L. major–infected Macrophages and Is Rescued by a p38MAPK Activator Establishing a Host-protective Memory T Cell Response 
The Journal of Experimental Medicine  2003;197(8):1037-1043.
Leishmania, a protozoan parasite, lives and multiplies as amastigote within macrophages. It is proposed that the macrophage expressed CD40 interacts with CD40 ligand on T cells to induce IFN-γ, a Th1-type cytokine that restricts the amastigote growth. Here, we demonstrate that CD40 cross-linking early after infection resulted in inducible nitric oxide synthetase type-2 (iNOS2) induction and iNOS2-dependent amastigote elimination. Although CD40 expression remained unaltered on L. major–infected macrophages, delay in the treatment of macrophages or of mice with anti-CD40 antibody resulted in significant reduction in iNOS2 expression and leishmanicidal function suggesting impaired CD40 signaling in Leishmania infection. The inhibition of CD40-induced iNOS2 expression by SB203580, a p38-mitogen activated protein kinase (p38MAPK)-specific inhibitor, and the reversal of the inhibition by anisomycin, a p38MAPK activator, suggested a crucial role of p38MAPK in CD40 signaling. Indeed, the CD40-induced p38MAPK phosphorylation, iNOS2 expression and anti-leishmanial function were impaired in Leishmania-infected macrophages but were restored by anisomycin. Anisomycin's effects were reversed by SB203580 emphasizing the role of p38MAPK in CD40-induced iNOS2-dependent leishmanicidal function. Anisomycin administration in L. major–infected BALB/c mice resulted in significant reduction in the parasite load and established a host-protective Th1-type memory response. Also implicated in these findings is a scientific rationale to define novel anti-parasite drug targets and to bypass the problem of drug resistance.
PMCID: PMC2193877  PMID: 12695487
Leishmaniasis; immune evasion mechanism; CD40 signaling; p38MAPK; T cell memory

Results 1-4 (4)