Search tips
Search criteria

Results 1-25 (192)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Different sensitivity of germinal center B cell-like diffuse large B cell lymphoma cells towards ibrutinib treatment 
Although rituximab in the combination of CHOP chemotherapy has been widely used as the standard treatment for several kinds of B-cell non-Hodgkin lymphoma (B-NHL), a great number of B-NHL patients treated with this immunotherapy still develop primary and secondary resistance. Recently Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib showed promising therapeutic effect in relapsed/refractory CLL and B-cell NHL, which provided essential alternatives for these patients.
The proliferation and apoptosis induction of tumor cells were measured by cell viability assay and Annexin-V staining. Western Blotting analysis and real-time PCR were used to detect the expression level of target proteins and chemokines production.
We demonstrated that ibrutinib inhibited the proliferation and induced apoptosis of GCB-DLBCL cell lines through suppression of BCR signaling pathway and activation of caspase-3. Furthermore, the chemokines CCL3 and CCL4 production from tumor cells were also found to be attenuated by ibrutinib treatment. But different cell lines exhibited distinct sensitivity after ibrutinib treatment. Interestingly, the decreasing level of p-ERK after ibrutinib treatment, but not the basal expression level of Btk, correlated with different drug sensitivity.
Ibrutinib could be a potentially useful therapy for GCB-DLBCL and the decreasing level of p-ERK could become a useful biomarker to predict related therapeutic response.
PMCID: PMC3984027  PMID: 24693884
Germinal center B cell-like diffuse large B cell lymphoma; Bruton’s tyrosine kinase; BCR; Apoptosis
2.  Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1 
American journal of hematology  2013;88(4):265-272.
Multiple myeloma (MM) is characterized by the malignant expansion of differentiated plasma cells. Although many chemotherapeutic agents display cytotoxic activity toward MM cells, patients inevitably succumb to their disease because the tumor cells become resistant to the anticancer drugs. The cancer stem cell hypothesis postulates that a small subpopulation of chemotherapy-resistant cancer cells is responsible for propagation of the tumor. Herein we report that efflux of the pluripotent stem cell dye CDy1 identifies a subpopulation in MM cell lines characterized by increased expression of P-glycoprotein, a member of the ABC (ATP-binding cassette) superfamily of transporters encoded by ABCB1. We also demonstrate that ABCB1-overexpressing MM cells are resistant to the second-generation proteasome inhibitor carfilzomib that recently received accelerated approval for the treatment of therapy-refractive MM by the U.S. Food and Drug Administration. Moreover, increased resistance to carfilzomib in sensitive MM cells following drug selection was associated with upregulation of ABCB1 cell-surface expression which correlated with increased transporter activity as measured by CDy1 efflux. We further show that chemosensitization of MM cells to carfilzomib could be achieved in vitro by cotreatment with vismodegib, a hedgehog pathway antagonist which is currently in MM clinical trials. CDy1 efflux may therefore be a useful assay to determine whether high expression of ABCB1 is predictive of poor clinical responses in MM patients treated with carfilzomib. Our data also suggest that inclusion of vismodegib might be a potential strategy to reverse ABCB1-mediated drug resistance should it occur.
PMCID: PMC3608751  PMID: 23475625
CDy1; ABCB1; multiple myeloma; carfilzomib; vismodegib; ASPM; KIF14; TMPO
3.  A Novel Protein Protects Bacterial Iron-Dependent Metabolism from Nitric Oxide 
Journal of Bacteriology  2013;195(20):4702-4708.
Reactive nitrogen species (RNS), in particular nitric oxide (NO), are toxic to bacteria, and bacteria have mechanisms to allow growth despite this stress. Understanding how bacteria interact with NO is essential to understanding bacterial physiology in many habitats, including pathogenesis; however, many targets of NO and enzymes involved in NO resistance remain uncharacterized. We performed for the first time a metabolomic screen on NO-treated and -untreated bacteria to define broadly the effects of NO on bacterial physiology, as well as to identify the function of NnrS, a previously uncharacterized enzyme involved in defense against NO. We found many known and novel targets of NO. We also found that iron-sulfur cluster enzymes were preferentially inhibited in a strain lacking NnrS due to the formation of iron-NO complexes. We then demonstrated that NnrS is particularly important for resistance to nitrosative stress under anaerobic conditions. Our data thus reveal the breadth of the toxic effects of NO on metabolism and identify the function of an important enzyme in alleviating this stress.
PMCID: PMC3807435  PMID: 23935055
4.  Cancer-specific requirement for BUB1B/BubR1 in human brain tumor isolates and genetically transformed cells 
Cancer discovery  2012;3(2):198-211.
To identify new candidate therapeutic targets for Glioblastoma multiforme (GBM), we combined functional genetics and GBM network modeling to identify kinases required for the growth of patient-derived brain tumor initiating cells (BTICs), but which are dispensable to proliferating human neural stem cells (NSCs). This approach yielded BUB1B/BUBR1, a critical mitotic spindle checkpoint player, as the top scoring GBM-lethal kinase. Knockdown of BUB1B inhibited expansion of BTIC isolates, both in vitro and in vivo, without affecting proliferation of NSCs or astrocytes. Mechanistic studies revealed that BUB1B’s GLEBs domain activity is required to suppress lethal kinetochore-microtubule (KT-MT) attachment defects in GBM isolates and genetically transformed cells with altered sister KT dynamics, which likely favor KT-MT instability. These results indicate that GBM tumors have added requirement for BUB1B to suppress lethal consequences of altered KT function. They further suggest that sister KT measurements may predict cancer-specific sensitivity to BUB1B inhibition and perhaps other mitotic targets that affect KT-MT stability.
PMCID: PMC3632446  PMID: 23154965
5.  Human Papillomavirus Type 58 Genome Variations and RNA Expression in Cervical Lesions 
Journal of Virology  2013;87(16):9313-9322.
Human papillomavirus type 58 (HPV58) is relatively prevalent in China and other Asian countries. In this study, the HPV58 genome in cervical lesions was decoded from five grade 2 or 3 cervical intraepithelial neoplasia lesion (CIN2/3) samples and five cervical cancer tissues using rolling-circle amplification of total cell DNA and deep sequencing and verified by whole-genome cloning and sequencing. HPV58 isolates from China feature a total of 52 nucleotide substitutions (0.66%) from the reference HPV58 sequence, which appear mainly in two regions, with 12 from nucleotides (nt) 3430 to 4136 covering the E2/E4/E5 open reading frames (ORFs) and 13 from nt 4621 to 5540 covering the L2 ORF; these could be grouped as HPV58 Chinese Zhejiang-1, -2, and -3 (CNZJ-1, -2, and -3) according to their sequence similarities and restriction enzyme digestion. Phylogenetically, CNZJ-3 is similar to the reference HPV58 sublineage A1 sequence. The other two are close to sublineage A2. Analysis of cervical lesion-derived RNA revealed abundant HPV58 early transcripts spliced at the E6 and E1/E2 ORFs, where two 5′ splice sites at nt 232 and nt 898 and two 3′ splice sites at nt 510 and nt 3355 can be identified. Thus, our study represents the first genome-wide analysis of HPV58 and its expression in cervical lesions.
PMCID: PMC3754072  PMID: 23785208
6.  Quorum Sensing Regulatory Cascades Control Vibrio fluvialis Pathogenesis 
Journal of Bacteriology  2013;195(16):3583-3589.
Quorum sensing (QS) is a process by which individual bacteria are able to communicate with one another, thereby enabling the population as a whole to coordinate gene regulation and subsequent phenotypic outcomes. Communication is accomplished through production and detection of small molecules in the extracellular milieu. In many bacteria, particularly Vibrio species, multiple QS systems result in multiple signals, as well as cross talk between systems. In this study, we identify two QS systems in the halophilic enteric pathogen Vibrio fluvialis: one acyl-homoserine lactone (AHL) based and one CAI-1/AI-2 based. We show that a LuxI homolog, VfqI, primarily produces 3-oxo-C10-HSL, which is sensed by a LuxR homolog, VfqR. VfqR-AHL is required to activate vfqI expression and autorepress vfqR expression. In addition, we have shown that similar to that in V. cholerae and V. harveyi, V. fluvialis produces CAI-1 and AI-2 signal molecules to activate the expression of a V. cholerae HapR homolog through LuxO. Although VfqR-AHL does not regulate hapR expression, HapR can repress vfqR transcription. Furthermore, we found that QS in V. fluvialis positively regulates production of two potential virulence factors, an extracellular protease and hemolysin. QS also affects cytotoxic activity against epithelial tissue cultures. These data suggest that V. fluvialis integrates QS regulatory pathways to play important physiological roles in pathogenesis.
PMCID: PMC3754567  PMID: 23749976
9.  Forkhead Transcription Factor Foxq1 Promotes Epithelial–Mesenchymal Transition and Breast Cancer Metastasis 
Cancer research  2011;71(4):1292-1301.
Epithelial-mesenchymal transition (EMT) promotes cancer invasion and metastasis, but the integrative mechanisms that coordinate these processes are incompletely understood. In this study, we used a cross-species expression profiling strategy in metastatic cell lines of human and mouse origin to identify 22 up-regulated and 12 down-regulated genes that are part of an essential genetic program in metastasis. In particular, we identified a novel function in metastasis that was not previously known for the transcription factor Forkhead Box Q1 (Foxq1). Ectopic expression of Foxq1 increased cell migration and invasion in vitro, enhanced the lung metastatic capabilities of mammary epithelial cells in vivo, and triggered a marked EMT. In contrast, Foxq1 knockdown elicited converse effects on these phenotypes in vitro and in vivo. Neither ectopic expression nor knockdown of Foxq1 significantly affected cell proliferation or colony formation in vitro. Notably, Foxq1 repressed expression of the core EMT regulator E-cadherin by binding to the E-box in its promoter region. Further mechanistic investigation revealed that Foxq1 expression is regulated by TGF-β1, and that Foxq1 knockdown blocked TGF-β1-induced EMT at both morphological and molecular levels. Our findings highlight the feasibility of cross-species expression profiling as a strategy to identify metastasis-related genes, and they reveal that EMT induction is a likely mechanism underlying a novel metastasis-promoting function of Foxq1 defined here in breast cancer.
PMCID: PMC3906209  PMID: 21285253
10.  Safety and efficacy of bevacizumab combined with R-CHOP regimen in seven Chinese patients with untreated diffuse large B-cell lymphoma 
Rituximab plus CHOP (R-CHOP) significantly improved the outcome of diffuse large B cell lymphoma (DLBCL), a common sub-type of non-Hodgkin lymphoma. But 40% – 50% of DLBCL patients cannot be cured by this regimen. Some clinical trials showed that bevacizumab might be useful in the treatment of DLBCL. This study evaluated the safety and efficacy of bevacizumab combined with the R-CHOP (A-R-CHOP) regimen in Chinese patients with previously untreated DLBCL.
Patients with previously untreated DLBCL received A-R-CHOP regimen therapy. All patients with complete response (CR)/ unconfirmed complete response(CRu) after 8 cycles of A-R-CHOP received the bevacizumab maintenance therapy once every 3 weeks. The remained bulky disease was treated with radiotherapy.
Seven Chinese patients were treated. All of them had bulky diseases. One patient had progressive disease after 4 cycles of A-R-CHOP therapy. The rest six patients completed 8 cycles of A-R-CHOP treatment. All of these six patients reached CR/CRu (5 CR, 1 CRu). Bevacizumab maintenance therapy was given to 4 CR patients. All 7 patients experienced Grade 3/4 hematologic adverse events; additionally, one had Grade 3 gastrointestinal toxicity and one had Grade 1 epistaxis. During bevacizumab maintenance therapy, one patient had Grade 1 gingival bleeding, another experienced Grade 1 proteinuria and then Grade 3 congestive heart failure 4 months after completion of maintenance therapy. At the end of July 2013, the patient who had progressive disease after 4 cycles of A-R-CHOP died of progressive disease, the other six remained CR response.
The A-R-CHOP regimen is effective for untreated DLBCL, but may cause bevacizumab-specific toxicities, which should be monitored.
PMCID: PMC3897913  PMID: 24438119
Bevacizumab; DLBCL; Safety; Efficacy
11.  On Learning Cluster Coefficient of Private Networks 
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as clustering coefficient or modularity often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we treat a graph statistics as a function f and develop a divide and conquer approach to enforce differential privacy. The basic procedure of this approach is to first decompose the target computation f into several less complex unit computations f1, …, fm connected by basic mathematical operations (e.g., addition, subtraction, multiplication, division), then perturb the output of each fi with Laplace noise derived from its own sensitivity value and the distributed privacy threshold εi, and finally combine those perturbed fi as the perturbed output of computation f. We examine how various operations affect the accuracy of complex computations. When unit computations have large global sensitivity values, we enforce the differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We illustrate our approach by using clustering coefficient, which is a popular statistics used in social network analysis. Empirical evaluations on five real social networks and various synthetic graphs generated from three random graph models show the developed divide and conquer approach outperforms the direct approach.
PMCID: PMC3889125  PMID: 24429843
12.  Genome sequencing accuracy by RCA-seq versus long PCR template cloning and sequencing in identification of human papillomavirus type 58 
Cell & Bioscience  2014;4:5.
Genome variations in human papillomaviruses (HPVs) are common and have been widely investigated in the past two decades. HPV genotyping depends on the finding of the viral genome variations in the L1 ORF. Other parts of the viral genome variations have also been implicated as a possible genetic factor in viral pathogenesis and/or oncogenicity.
In this study, the HPV58 genome in cervical lesions was completely sequenced both by rolling-circle amplification of total cell DNA and deep sequencing (RCA-seq) and by long PCR template cloning and sequencing. By comparison of three HPV58 genome sequences decoded from three clinical samples to reference HPV-58, we demonstrated that RCA-seq is much more accurate than long-PCR template cloning and sequencing in decoding HPV58 genome. Three HPV58 genomes decoded by RCA-seq displayed a total of 52 nucleotide substitutions from reference HPV58, which could be verified by long PCR template cloning and sequencing. However, the long PCR template cloning and sequencing led to additional nucleotide substitutions, insertions, and deletions from an authentic HPV58 genome in a clinical sample, which vary from one cloned sequence to another. Because the inherited error-prone nature of Tgo DNA polymerase used in preparation of the long PCR templates of HPV58 genome from the clinical samples, the measurable error rate in incorporation of nucleotide into an elongating DNA template was about 0.149% ±0.038% in our studies.
Since PCR template cloning and sequencing is widely used in identification of single nucleotide polymorphism (SNP), our data indicate that a serious caution should be taken in finding of true SNPs in various genetic studies.
PMCID: PMC3903022  PMID: 24410913
Human papillomaviruses; HPV58; Cervical cancer; Single nucleotide polymorphism; Genotyping; Genome variations; Rolling circle amplification; DNA deep sequencing
13.  PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum 
Nature  2013;499(7457):223-227.
The variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on the surface of P. falciparum infected Red Blood Cells (iRBCs) is a critical virulence factor for malaria1. Each parasite encodes 60 antigenically distinct var genes encoding PfEMP1s, but during infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune evasion mechanism to avoid the host’s antibody responses2,3. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown4–7. Here we show that knocking out the P. falciparum variant-silencing SET gene (PfSETvs), which encodes an ortholog of Drosophila melanogaster ASH1 and controls histone H3 lysine 36 trimethylation (H3K36me3) on var genes, results in the transcription of virtually all var genes in the single parasite nuclei and their expression as proteins on the surface of individual iRBCs. PfSETvs-dependent H3K36me3 is present along the entire gene body including the transcription start site (TSS) to silence var genes. With low occupancy of PfSETvs at both the TSS of var genes and the intronic promoter, expression of var genes coincides with transcription of their corresponding antisense long non-coding RNA (lncRNA). These results uncover a novel role of the PfSETvs-dependent H3K36me3 in silencing var genes in P. falciparum that might provide a general mechanism by which orthologs of PfSETvs repress gene expression in other eukaryotes. PfSETvs knockout parasites expressing all PfEMP1s may also be applied to the development of a malaria vaccine.
PMCID: PMC3770130  PMID: 23823717
14.  Image Mosaic Method Based on SIFT Features of Line Segment 
This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling.
PMCID: PMC3913316  PMID: 24511326
15.  Knockdown of Hsc70-5/mortalin Induces Loss of Synaptic Mitochondria in a Drosophila Parkinson’s Disease Model 
PLoS ONE  2013;8(12):e83714.
Mortalin is an essential component of the molecular machinery that imports nuclear-encoded proteins into mitochondria, assists in their folding, and protects against damage upon accumulation of dysfunctional, unfolded proteins in aging mitochondria. Mortalin dysfunction associated with Parkinson’s disease (PD) increases the vulnerability of cultured cells to proteolytic stress and leads to changes in mitochondrial function and morphology. To date, Drosophila melanogaster has been successfully used to investigate pathogenesis following the loss of several other PD-associated genes. We generated the first loss-of-Hsc70-5/mortalin-function Drosophila model. The reduction of Mortalin expression recapitulates some of the defects observed in the existing Drosophila PD-models, which include reduced ATP levels, abnormal wing posture, shortened life span, and reduced spontaneous locomotor and climbing ability. Dopaminergic neurons seem to be more sensitive to the loss of mortalin than other neuronal sub-types and non-neuronal tissues. The loss of synaptic mitochondria is an early pathological change that might cause later degenerative events. It precedes both behavioral abnormalities and structural changes at the neuromuscular junction (NMJ) of mortalin-knockdown larvae that exhibit increased mitochondrial fragmentation. Autophagy is concomitantly up-regulated, suggesting that mitochondria are degraded via mitophagy. Ex vivo data from human fibroblasts identifies increased mitophagy as an early pathological change that precedes apoptosis. Given the specificity of the observed defects, we are confident that the loss-of-mortalin model presented in this study will be useful for further dissection of the complex network of pathways that underlie the development of mitochondrial parkinsonism.
PMCID: PMC3875477  PMID: 24386261
16.  Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma 
BMC Bioinformatics  2013;14:365.
Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally.
In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma.
In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer.
PMCID: PMC3878503  PMID: 24341432
17.  Engineered Proteins: Redox Properties and Their Applications 
Antioxidants & Redox Signaling  2012;17(12):1796-1822.
Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822.
I. Introduction
A. Redox properties of naturally occurring/wild-type proteins
1. Metalloproteins
a. Iron/heme proteins
b. Copper metalloproteins
c. Zinc-finger proteins
d. Other metal-based (nickel, vanadium, and molybdenum) redox proteins
2. Flavoproteins
3. Quinoproteins
4. Redox-active amino-acid residue proteins
B. Electron transfer in proteins
II. Engineering Redox-Active Proteins
A. Methods available for designing artificial redox proteins
1. Rational design
2. Directed evolution
3. Domain shuffling/molecular Lego
4. Catalytic antibodies
5. Protein reconstitution
6. Incorporation of non-natural redox residues/metallocofactors
B. Electrochemical methods that characterize engineered redox proteins
III. Properties of Engineered Redox Proteins
A. Engineered copper proteins
B. Engineered heme proteins
C. Engineered FeS cluster proteins
D. Engineered proteins containing redox active residues
IV. Applications of Engineered Redox Proteins
A. Biosensors
1. Glucose biosensors
2. Iron-based redox biosensors
B. Biofuel cells
C. Photovoltaic cells
D. Electrochemical immunoassay
E. Pharmaceutical applications of engineered redox proteins
F. Engineered redox proteins in catalysis
V. Future Trends
PMCID: PMC3474195  PMID: 22435347
18.  Continuous-Time Proportional Hazards Regression for Ecological Monitoring Data 
We consider a continuous-time proportional hazards model for the analysis of ecological monitoring data where subjects are monitored at discrete times and fixed sites across space. Since the exact time of event occurrence is not directly observed, we rely on dichotomous event indicators observed at monitoring times to make inference about the model parameters. We use autoregression on the response at neighboring sites from a previous time point to take into account spatial dependence. The interesting fact is utilized that the probability of observing an event at a monitoring time when the underlying hazards is proportional falls under the class of generalized linear models with binary responses and complementary log-log link functions. Thus, a maximum likelihood approach can be taken for inference and the computation can be carried out using standard statistical software packages. This approach has significant computational advantages over some of the existing methods that rely on Monte Carlo simulations. Simulation experiments are conducted and demonstrate that our method has sound finite-sample properties. A real dataset from an ecological study that monitored bark beetle colonization of red pines in Wisconsin is analyzed using the proposed models and inference. Supplementary materials that contain technical details are available online.
PMCID: PMC3849820  PMID: 24319326
Bark beetle; Binary data; Forest ecology; Generalized linear model; Maximum likelihood; Spatial autoregression
19.  Additive hazards regression and partial likelihood estimation for ecological monitoring data across space 
Statistics and its interface  2012;5(2):10.4310/SII.2012.v5.n2.a5.
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
PMCID: PMC3849836  PMID: 24319528
Current status data; Grouped survival data; Maximum likelihood; Multiple monitoring times; Spatial autoregression; Spatial lattice
20.  Cloning and functional analysis of a novel ascorbate peroxidase (APX) gene from Anthurium andraeanum *  
An 888-bp full-length ascorbate peroxidase (APX) complementary DNA (cDNA) gene was cloned from Anthurium andraeanum, and designated as AnAPX. It contains a 110-bp 5′-noncoding region, a 28-bp 3′-noncoding region, and a 750-bp open reading frame (ORF). This protein is hydrophilic with an aliphatic index of 81.64 and its structure consisting of α-helixes, β-turns, and random coils. The AnAPX protein showed 93%, 87%, 87%, 87%, and 86% similarities to the APX homologs from Zantedeschia aethiopica, Vitis pseudoreticulata, Gossypium hirsutum, Elaeis guineensis, and Zea mays, respectively. AnAPX gene transcript was measured non-significantly in roots, stems, leaves, spathes, and spadices by real-time polymerase chain reaction (RT-PCR) analysis. Interestingly, this gene expression was remarkably up-regulated in response to a cold stress under 6 °C, implying that AnAPX might play an important role in A. andraeanum tolerance to cold stress. To confirm this function we overexpressed AnAPX in tobacco plants by transformation with an AnAPX expression construct driven by CaMV 35S promoter. The transformed tobacco seedlings under 4 °C showed less electrolyte leakage (EL) and malondialdehyde (MDA) content than the control. The content of MDA was correlated with chilling tolerance in these transgenic plants. These results show that AnAPX can prevent the chilling challenged plant from cell membrane damage and ultimately enhance the plant cold tolerance.
PMCID: PMC3863369  PMID: 24302711
AnAPX; Gene expression; Cold stress; Anthurium andraeanum
21.  Paracrine Effects of Bone Marrow–Derived Endothelial Progenitor Cells: Cyclooxygenase-2/Prostacyclin Pathway in Pulmonary Arterial Hypertension 
PLoS ONE  2013;8(11):e79215.
Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH). Some paracrine factors secreted by bone marrow–derived endothelial progenitor cells (BMEPCs) have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT)-induced PAH via producing vasoprotective substances in a paracrine fashion.
Methods and Results
Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2) expression, prostacyclin (PGI2) and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS) and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture.
Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.
PMCID: PMC3832480  PMID: 24260171
22.  A Viral Genome Landscape of RNA Polyadenylation from KSHV Latent to Lytic Infection 
PLoS Pathogens  2013;9(11):e1003749.
RNA polyadenylation (pA) is one of the major steps in regulation of gene expression at the posttranscriptional level. In this report, a genome landscape of pA sites of viral transcripts in B lymphocytes with Kaposi sarcoma-associated herpesvirus (KSHV) infection was constructed using a modified PA-seq strategy. We identified 67 unique pA sites, of which 55 could be assigned for expression of annotated ∼90 KSHV genes. Among the assigned pA sites, twenty are for expression of individual single genes and the rest for multiple genes (average 2.7 genes per pA site) in cluster-gene loci of the genome. A few novel viral pA sites that could not be assigned to any known KSHV genes are often positioned in the antisense strand to ORF8, ORF21, ORF34, K8 and ORF50, and their associated antisense mRNAs to ORF21, ORF34 and K8 could be verified by 3′RACE. The usage of each mapped pA site correlates to its peak size, the larger (broad and wide) peak size, the more usage and thus, the higher expression of the pA site-associated gene(s). Similar to mammalian transcripts, KSHV RNA polyadenylation employs two major poly(A) signals, AAUAAA and AUUAAA, and is regulated by conservation of cis-elements flanking the mapped pA sites. Moreover, we found two or more alternative pA sites downstream of ORF54, K2 (vIL6), K9 (vIRF1), K10.5 (vIRF3), K11 (vIRF2), K12 (Kaposin A), T1.5, and PAN genes and experimentally validated the alternative polyadenylation for the expression of KSHV ORF54, K11, and T1.5 transcripts. Together, our data provide not only a comprehensive pA site landscape for understanding KSHV genome structure and gene expression, but also the first evidence of alternative polyadenylation as another layer of posttranscriptional regulation in viral gene expression.
Author Summary
A genome-wide polyadenylation landscape in the expression of human herpesviruses has not been reported. In this study, we provide the first genome landscape of viral RNA polyadenylation sites in B cells from KSHV latent to lytic infection by using a modified PA-seq protocol and selectively validated by 3′ RACE. We found that KSHV genome contains 67 active pA sites for the expression of its ∼90 genes and a few antisense transcripts. Among the mapped pA sites, a large fraction of them are for the expression of cluster genes and the production of bicistronic or polycistronic transcripts from KSHV genome and only one-third are used for the expression of single genes. We found that the size of individual PA peaks is positively correlated with the usage of corresponding pA site, which is determined by the number of reads within the PA peak from latent to lytic KSHV infection, and the strength of cis-elements surrounding KSHV pA site determines the expression level of viral genes. Lastly, we identified and experimentally validated alternative polyadenylation of KSHV ORF54, T1.5, and K11 during viral lytic infection. To our knowledge, this is the first report on alternative polyadenylation events in KSHV infection.
PMCID: PMC3828183  PMID: 24244170
23.  A Common Variant in the SIAH2 Locus Is Associated with Estrogen Receptor-Positive Breast Cancer in the Chinese Han Population 
PLoS ONE  2013;8(11):e79365.
Genome-wide association studies (GWAS) have identified many loci associated with breast cancer risk. These studies have primarily been conducted in populations of European descent.
To determine whether previously reported susceptibility loci in other ethnic groups are also risk factors for breast cancer in a Chinese population.
We genotyped 21 previously reported single nucleotide polymorphisms (SNPs) within a female Chinese cohort of 1203 breast cancer cases and 2525 healthy controls using the Sequenom iPlex platform. Fourteen SNPs passed the quality control test. These SNPs were subjected to statistical analysis for the entire cohort and were further analyzed for estrogen receptor (ER) status. The associations of the SNPs with disease susceptibility were assessed using logistic regression, adjusting for age. The Bonferroni correction was used to conservatively account for multiple testing, and the threshold for statistical significance was P<3.57×10−3 (0.05/14).
Although none of the SNPs showed an overall association with breast cancer, an analysis of the ER status of the breast cancer patients revealed that the SIAH2 locus (rs6788895; P = 5.73×10−4, odds ratio [OR] = 0.81) is associated with ER-positive breast cancer.
A common variant in the SIAH2 locus is associated with ER-positive breast cancer in the Chinese Han population. The replication of published GWAS results in other ethnic groups provides important information regarding the genetic etiology of breast cancer.
PMCID: PMC3823686  PMID: 24244489
25.  A Generalized Pyramid Matching Kernel for Human Action Recognition in Realistic Videos 
Sensors (Basel, Switzerland)  2013;13(11):14398-14416.
Human action recognition is an increasingly important research topic in the fields of video sensing, analysis and understanding. Caused by unconstrained sensing conditions, there exist large intra-class variations and inter-class ambiguities in realistic videos, which hinder the improvement of recognition performance for recent vision-based action recognition systems. In this paper, we propose a generalized pyramid matching kernel (GPMK) for recognizing human actions in realistic videos, based on a multi-channel “bag of words” representation constructed from local spatial-temporal features of video clips. As an extension to the spatial-temporal pyramid matching (STPM) kernel, the GPMK leverages heterogeneous visual cues in multiple feature descriptor types and spatial-temporal grid granularity levels, to build a valid similarity metric between two video clips for kernel-based classification. Instead of the predefined and fixed weights used in STPM, we present a simple, yet effective, method to compute adaptive channel weights of GPMK based on the kernel target alignment from training data. It incorporates prior knowledge and the data-driven information of different channels in a principled way. The experimental results on three challenging video datasets (i.e., Hollywood2, Youtube and HMDB51) validate the superiority of our GPMK w.r.t. the traditional STPM kernel for realistic human action recognition and outperform the state-of-the-art results in the literature.
PMCID: PMC3871056  PMID: 24284771
video analysis; human action recognition; pyramid matching kernel; kernel-based classification method

Results 1-25 (192)