PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Sheth, bihar")
1.  An Emerging Mycoplasma Associated with Trichomoniasis, Vaginal Infection and Disease 
PLoS ONE  2014;9(10):e110943.
Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as “Mnola.” In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name “Candidatus Mycoplasma girerdii” for this potential new pathogen.
doi:10.1371/journal.pone.0110943
PMCID: PMC4206474  PMID: 25337710
2.  In silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem-Cell Transplant Donors and Recipients: Understanding the Quantitative Immunobiology of Allogeneic Transplantation 
Donor T-cell mediated graft versus host (GVH) effects may result from the aggregate alloreactivity to minor histocompatibility antigens (mHA) presented by the human leukocyte antigen (HLA) molecules in each donor–recipient pair undergoing stem-cell transplantation (SCT). Whole exome sequencing has previously demonstrated a large number of non-synonymous single nucleotide polymorphisms (SNP) present in HLA-matched recipients of SCT donors (GVH direction). The nucleotide sequence flanking each of these SNPs was obtained and the amino acid sequence determined. All the possible nonameric peptides incorporating the variant amino acid resulting from these SNPs were interrogated in silico for their likelihood to be presented by the HLA class I molecules using the Immune Epitope Database stabilized matrix method (SMM) and NetMHCpan algorithms. The SMM algorithm predicted that a median of 18,396 peptides weakly bound HLA class I molecules in individual SCT recipients, and 2,254 peptides displayed strong binding. A similar library of presented peptides was identified when the data were interrogated using the NetMHCpan algorithm. The bioinformatic algorithm presented here demonstrates that there may be a high level of mHA variation in HLA-matched individuals, constituting a HLA-specific alloreactivity potential.
doi:10.3389/fimmu.2014.00529
PMCID: PMC4222229  PMID: 25414699
alloreactivity potential; stem-cell transplant; whole exome sequencing; HLA; minor histocompatibility antigen
3.  Stem Cell Transplantation as a Dynamical System: Are Clinical Outcomes Deterministic? 
Outcomes in stem cell transplantation (SCT) are modeled using probability theory. However, the clinical course following SCT appears to demonstrate many characteristics of dynamical systems, especially when outcomes are considered in the context of immune reconstitution. Dynamical systems tend to evolve over time according to mathematically determined rules. Characteristically, the future states of the system are predicated on the states preceding them, and there is sensitivity to initial conditions. In SCT, the interaction between donor T cells and the recipient may be considered as such a system in which, graft source, conditioning, and early immunosuppression profoundly influence immune reconstitution over time. This eventually determines clinical outcomes, either the emergence of tolerance or the development of graft versus host disease. In this paper, parallels between SCT and dynamical systems are explored and a conceptual framework for developing mathematical models to understand disparate transplant outcomes is proposed.
doi:10.3389/fimmu.2014.00613
PMCID: PMC4253954  PMID: 25520720
stem cell transplantation; dynamical system; T cell repertoire; logistic function; graft versus host disease
4.  Species-level classification of the vaginal microbiome 
BMC Genomics  2012;13(Suppl 8):S17.
Background
The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. High-resolution identification of bacterial taxa, minimally to the species level, is necessary to fully understand the association of the vaginal microbiome with bacterial vaginosis, sexually transmitted infections, pregnancy complications, menopause, and other physiological and infectious conditions. However, most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. While surveys of 16S rRNA gene sequences are common in microbiome studies, few well-curated, body-site-specific reference databases of 16S rRNA gene sequences are available, and no such resource is available for vaginal microbiome studies.
Results
We constructed the Vaginal 16S rDNA Reference Database, a comprehensive and non-redundant database of 16S rDNA reference sequences for bacterial taxa likely to be associated with vaginal health, and we developed STIRRUPS, a new method that employs the USEARCH algorithm with a curated reference database for rapid species-level classification of 16S rDNA partial sequences. The method was applied to two datasets of V1-V3 16S rDNA reads: one generated from a mock community containing DNA from six bacterial strains associated with vaginal health, and a second generated from over 1,000 mid-vaginal samples collected as part of the Vaginal Human Microbiome Project at Virginia Commonwealth University. In both datasets, STIRRUPS, used in conjunction with the Vaginal 16S rDNA Reference Database, classified more than 95% of processed reads to a species-level taxon using a 97% global identity threshold for assignment.
Conclusions
This database and method provide accurate species-level classifications of metagenomic 16S rDNA sequence reads that will be useful for analysis and comparison of microbiome profiles from vaginal samples. STIRRUPS can be used to classify 16S rDNA sequence reads from other ecological niches if an appropriate reference database of 16S rDNA sequences is available.
doi:10.1186/1471-2164-13-S8-S17
PMCID: PMC3535711  PMID: 23282177
5.  A framework for human microbiome research 
Methé, Barbara A. | Nelson, Karen E. | Pop, Mihai | Creasy, Heather H. | Giglio, Michelle G. | Huttenhower, Curtis | Gevers, Dirk | Petrosino, Joseph F. | Abubucker, Sahar | Badger, Jonathan H. | Chinwalla, Asif T. | Earl, Ashlee M. | FitzGerald, Michael G. | Fulton, Robert S. | Hallsworth-Pepin, Kymberlie | Lobos, Elizabeth A. | Madupu, Ramana | Magrini, Vincent | Martin, John C. | Mitreva, Makedonka | Muzny, Donna M. | Sodergren, Erica J. | Versalovic, James | Wollam, Aye M. | Worley, Kim C. | Wortman, Jennifer R. | Young, Sarah K. | Zeng, Qiandong | Aagaard, Kjersti M. | Abolude, Olukemi O. | Allen-Vercoe, Emma | Alm, Eric J. | Alvarado, Lucia | Andersen, Gary L. | Anderson, Scott | Appelbaum, Elizabeth | Arachchi, Harindra M. | Armitage, Gary | Arze, Cesar A. | Ayvaz, Tulin | Baker, Carl C. | Begg, Lisa | Belachew, Tsegahiwot | Bhonagiri, Veena | Bihan, Monika | Blaser, Martin J. | Bloom, Toby | Vivien Bonazzi, J. | Brooks, Paul | Buck, Gregory A. | Buhay, Christian J. | Busam, Dana A. | Campbell, Joseph L. | Canon, Shane R. | Cantarel, Brandi L. | Chain, Patrick S. | Chen, I-Min A. | Chen, Lei | Chhibba, Shaila | Chu, Ken | Ciulla, Dawn M. | Clemente, Jose C. | Clifton, Sandra W. | Conlan, Sean | Crabtree, Jonathan | Cutting, Mary A. | Davidovics, Noam J. | Davis, Catherine C. | DeSantis, Todd Z. | Deal, Carolyn | Delehaunty, Kimberley D. | Dewhirst, Floyd E. | Deych, Elena | Ding, Yan | Dooling, David J. | Dugan, Shannon P. | Dunne, Wm. Michael | Durkin, A. Scott | Edgar, Robert C. | Erlich, Rachel L. | Farmer, Candace N. | Farrell, Ruth M. | Faust, Karoline | Feldgarden, Michael | Felix, Victor M. | Fisher, Sheila | Fodor, Anthony A. | Forney, Larry | Foster, Leslie | Di Francesco, Valentina | Friedman, Jonathan | Friedrich, Dennis C. | Fronick, Catrina C. | Fulton, Lucinda L. | Gao, Hongyu | Garcia, Nathalia | Giannoukos, Georgia | Giblin, Christina | Giovanni, Maria Y. | Goldberg, Jonathan M. | Goll, Johannes | Gonzalez, Antonio | Griggs, Allison | Gujja, Sharvari | Haas, Brian J. | Hamilton, Holli A. | Harris, Emily L. | Hepburn, Theresa A. | Herter, Brandi | Hoffmann, Diane E. | Holder, Michael E. | Howarth, Clinton | Huang, Katherine H. | Huse, Susan M. | Izard, Jacques | Jansson, Janet K. | Jiang, Huaiyang | Jordan, Catherine | Joshi, Vandita | Katancik, James A. | Keitel, Wendy A. | Kelley, Scott T. | Kells, Cristyn | Kinder-Haake, Susan | King, Nicholas B. | Knight, Rob | Knights, Dan | Kong, Heidi H. | Koren, Omry | Koren, Sergey | Kota, Karthik C. | Kovar, Christie L. | Kyrpides, Nikos C. | La Rosa, Patricio S. | Lee, Sandra L. | Lemon, Katherine P. | Lennon, Niall | Lewis, Cecil M. | Lewis, Lora | Ley, Ruth E. | Li, Kelvin | Liolios, Konstantinos | Liu, Bo | Liu, Yue | Lo, Chien-Chi | Lozupone, Catherine A. | Lunsford, R. Dwayne | Madden, Tessa | Mahurkar, Anup A. | Mannon, Peter J. | Mardis, Elaine R. | Markowitz, Victor M. | Mavrommatis, Konstantinos | McCorrison, Jamison M. | McDonald, Daniel | McEwen, Jean | McGuire, Amy L. | McInnes, Pamela | Mehta, Teena | Mihindukulasuriya, Kathie A. | Miller, Jason R. | Minx, Patrick J. | Newsham, Irene | Nusbaum, Chad | O’Laughlin, Michelle | Orvis, Joshua | Pagani, Ioanna | Palaniappan, Krishna | Patel, Shital M. | Pearson, Matthew | Peterson, Jane | Podar, Mircea | Pohl, Craig | Pollard, Katherine S. | Priest, Margaret E. | Proctor, Lita M. | Qin, Xiang | Raes, Jeroen | Ravel, Jacques | Reid, Jeffrey G. | Rho, Mina | Rhodes, Rosamond | Riehle, Kevin P. | Rivera, Maria C. | Rodriguez-Mueller, Beltran | Rogers, Yu-Hui | Ross, Matthew C. | Russ, Carsten | Sanka, Ravi K. | Pamela Sankar, J. | Sathirapongsasuti, Fah | Schloss, Jeffery A. | Schloss, Patrick D. | Schmidt, Thomas M. | Scholz, Matthew | Schriml, Lynn | Schubert, Alyxandria M. | Segata, Nicola | Segre, Julia A. | Shannon, William D. | Sharp, Richard R. | Sharpton, Thomas J. | Shenoy, Narmada | Sheth, Nihar U. | Simone, Gina A. | Singh, Indresh | Smillie, Chris S. | Sobel, Jack D. | Sommer, Daniel D. | Spicer, Paul | Sutton, Granger G. | Sykes, Sean M. | Tabbaa, Diana G. | Thiagarajan, Mathangi | Tomlinson, Chad M. | Torralba, Manolito | Treangen, Todd J. | Truty, Rebecca M. | Vishnivetskaya, Tatiana A. | Walker, Jason | Wang, Lu | Wang, Zhengyuan | Ward, Doyle V. | Warren, Wesley | Watson, Mark A. | Wellington, Christopher | Wetterstrand, Kris A. | White, James R. | Wilczek-Boney, Katarzyna | Wu, Yuan Qing | Wylie, Kristine M. | Wylie, Todd | Yandava, Chandri | Ye, Liang | Ye, Yuzhen | Yooseph, Shibu | Youmans, Bonnie P. | Zhang, Lan | Zhou, Yanjiao | Zhu, Yiming | Zoloth, Laurie | Zucker, Jeremy D. | Birren, Bruce W. | Gibbs, Richard A. | Highlander, Sarah K. | Weinstock, George M. | Wilson, Richard K. | White, Owen
Nature  2012;486(7402):215-221.
A variety of microbial communities and their genes (microbiome) exist throughout the human body, playing fundamental roles in human health and disease. The NIH funded Human Microbiome Project (HMP) Consortium has established a population-scale framework which catalyzed significant development of metagenomic protocols resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 to 18 body sites up to three times, which to date, have generated 5,177 microbial taxonomic profiles from 16S rRNA genes and over 3.5 Tb of metagenomic sequence. In parallel, approximately 800 human-associated reference genomes have been sequenced. Collectively, these data represent the largest resource to date describing the abundance and variety of the human microbiome, while providing a platform for current and future studies.
doi:10.1038/nature11209
PMCID: PMC3377744  PMID: 22699610
6.  Optimizing Read Mapping to Reference Genomes to Determine Composition and Species Prevalence in Microbial Communities 
PLoS ONE  2012;7(6):e36427.
The Human Microbiome Project (HMP) aims to characterize the microbial communities of 18 body sites from healthy individuals. To accomplish this, the HMP generated two types of shotgun data: reference shotgun sequences isolated from different anatomical sites on the human body and shotgun metagenomic sequences from the microbial communities of each site. The alignment strategy for characterizing these metagenomic communities using available reference sequence is important to the success of HMP data analysis. Six next-generation aligners were used to align a community of known composition against a database comprising reference organisms known to be present in that community. All aligners report nearly complete genome coverage (>97%) for strains with over 6X depth of coverage, however they differ in speed, memory requirement and ease of use issues such as database size limitations and supported mapping strategies. The selected aligner was tested across a range of parameters to maximize sensitivity while maintaining a low false positive rate. We found that constraining alignment length had more impact on sensitivity than does constraining similarity in all cases tested. However, when reference species were replaced with phylogenetic neighbors, similarity begins to play a larger role in detection. We also show that choosing the top hit randomly when multiple, equally strong mappings are available increases overall sensitivity at the expense of taxonomic resolution. The results of this study identified a strategy that was used to map over 3 tera-bases of microbial sequence against a database of more than 5,000 reference genomes in just over a month.
doi:10.1371/journal.pone.0036427
PMCID: PMC3374613  PMID: 22719831
7.  Putative cis-Regulatory Elements Associated with Heat Shock Genes Activated During Excystation of Cryptosporidium parvum 
PLoS ONE  2010;5(3):e9512.
Background
Cryptosporidiosis is a ubiquitous infectious disease, caused by the protozoan parasites Cryptosporidium hominis and C. parvum, leading to acute, persistent and chronic diarrhea worldwide. Although the complications of this disease can be serious, even fatal, in immunocompromised patients of any age, they have also been found to lead to long term effects, including growth inhibition and impaired cognitive development, in infected immunocompetent children. The Cryptosporidium life cycle alternates between a dormant stage, the oocyst, and a highly replicative phase that includes both asexual vegetative stages as well as sexual stages, implying fine genetic regulatory mechanisms. The parasite is extremely difficult to study because it cannot be cultured in vitro and animal models are equally challenging. The recent publication of the genome sequence of C. hominis and C. parvum has, however, significantly advanced our understanding of the biology and pathogenesis of this parasite.
Methodology/Principal Findings
Herein, our goal was to identify cis-regulatory elements associated with heat shock response in Cryptosporidium using a combination of in silico and real time RT-PCR strategies. Analysis with Gibbs-Sampling algorithms of upstream non-translated regions of twelve genes annotated as heat shock proteins in the Cryptosporidium genome identified a highly conserved over-represented sequence motif in eleven of them. RT-PCR analyses, described herein and also by others, show that these eleven genes bearing the putative element are induced concurrent with excystation of parasite oocysts via heat shock.
Conclusions/Significance
Our analyses suggest that occurrences of a motif identified in the upstream regions of the Cryptosporidium heat shock genes represent parts of the transcriptional apparatus and function as stress response elements that activate expression of these genes during excystation, and possibly at other stages in the life cycle of the parasite. Since heat shock and excystation represent a critical step in the development of the infectious sporozoite form of Cryptosporidium, these results provide important insight into the pathogenicity of the parasite.
doi:10.1371/journal.pone.0009512
PMCID: PMC2832001  PMID: 20209102
8.  Comprehensive splice-site analysis using comparative genomics 
Nucleic Acids Research  2006;34(14):3955-3967.
We have collected over half a million splice sites from five species—Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana—and classified them into four subtypes: U2-type GT–AG and GC–AG and U12-type GT–AG and AT–AC. We have also found new examples of rare splice-site categories, such as U12-type introns without canonical borders, and U2-dependent AT–AC introns. The splice-site sequences and several tools to explore them are available on a public website (SpliceRack). For the U12-type introns, we find several features conserved across species, as well as a clustering of these introns on genes. Using the information content of the splice-site motifs, and the phylogenetic distance between them, we identify: (i) a higher degree of conservation in the exonic portion of the U2-type splice sites in more complex organisms; (ii) conservation of exonic nucleotides for U12-type splice sites; (iii) divergent evolution of C.elegans 3′ splice sites (3′ss) and (iv) distinct evolutionary histories of 5′ and 3′ss. Our study proves that the identification of broad patterns in naturally-occurring splice sites, through the analysis of genomic datasets, provides mechanistic and evolutionary insights into pre-mRNA splicing.
doi:10.1093/nar/gkl556
PMCID: PMC1557818  PMID: 16914448

Results 1-8 (8)