PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (87)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Activation of DNA damage response signaling by condensed chromatin 
Cell reports  2014;9(5):1703-1717.
Summary
The DNA damage response (DDR) occurs in the context of chromatin structure, and architectural features of chromatin contribute to DNA damage signaling and repair. While the role of chromatin decondensation in the DDR is established, we show here that chromatin condensation is integral to DDR signaling. We find that upon DNA damage, chromatin regions transiently expand before undergoing extensive compaction. Using a protein-chromatin tethering system to create defined chromatin domains, we show that interference with chromatin condensation results in failure to fully activate DDR. Conversely, forced induction of local chromatin condensation promotes ATM- and ATR-dependent activation of upstream DDR signaling in a break-independent manner. Finally, while persistent chromatin compaction enhanced upstream DDR signaling from irradiation-induced breaks, it reduced recovery and survival after damage. Our results demonstrate that chromatin condensation is sufficient for activation of DDR signaling and is an integral part of physiological DDR signaling.
doi:10.1016/j.celrep.2014.10.060
PMCID: PMC4267891  PMID: 25464843
2.  Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4 
Cell reports  2014;9(1):248-260.
Advanced age and DNA damage accumulation are strong risk factors for cancer. The premature-aging disorder Hutchinson Gilford Progeria Syndrome (HGPS) provides a unique opportunity to study the interplay between DNA damage and aging- associated tumor mechanisms, since HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neo- plastic transformation. This resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation- resistant cells leading to inhibition of oncogenic de-differentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals and BRD4-mediated tumor protection is clinically relevant, since a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific functions for BRD4 in tumorigenesis.
doi:10.1016/j.celrep.2014.08.069
PMCID: PMC4194066  PMID: 25284786
3.  Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing 
Nucleic Acids Research  2014;42(22):13662-13673.
Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1γ, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing.
doi:10.1093/nar/gku1226
PMCID: PMC4267647  PMID: 25414343
4.  Systematic identification of pathological lamin A interactors 
Molecular Biology of the Cell  2014;25(9):1493-1510.
As essential components of the cell nucleus, lamins play key roles in organizing genomes and as protein–protein interaction platforms. Mutations in lamin A cause a diverse set of human diseases. This work describes the identification of lamin A partners and assesses how interactions are affected by a comprehensive set of lamin A disease mutations.
Laminopathies are a collection of phenotypically diverse diseases that include muscular dystrophies, cardiomyopathies, lipodystrophies, and premature aging syndromes. Laminopathies are caused by >300 distinct mutations in the LMNA gene, which encodes the nuclear intermediate filament proteins lamin A and C, two major architectural elements of the mammalian cell nucleus. The genotype–phenotype relationship and the basis for the pronounced tissue specificity of laminopathies are poorly understood. Here we seek to identify on a global scale lamin A–binding partners whose interaction is affected by disease-relevant LMNA mutations. In a screen of a human genome–wide ORFeome library, we identified and validated 337 lamin A–binding proteins. Testing them against 89 known lamin A disease mutations identified 50 disease-associated interactors. Association of progerin, the lamin A isoform responsible for the premature aging disorder Hutchinson–Gilford progeria syndrome, with its partners was largely mediated by farnesylation. Mapping of the interaction sites on lamin A identified the immunoglobulin G (IgG)–like domain as an interaction hotspot and demonstrated that lamin A variants, which destabilize the Ig-like domain, affect protein–protein interactions more globally than mutations of surface residues. Analysis of a set of LMNA mutations in a single residue, which result in three phenotypically distinct diseases, identified disease-specific interactors. The results represent a systematic map of disease-relevant lamin A interactors and suggest loss of tissue-specific lamin A interactions as a mechanism for the tissue-specific appearance of laminopathic phenotypes.
doi:10.1091/mbc.E14-02-0733
PMCID: PMC4004598  PMID: 24623722
5.  Noncoding RNAs in DNA damage and Repair 
FEBS letters  2013;587(13):1832-1839.
Non-coding RNAs (ncRNAs) are increasingly recognized as central players in diverse biological processes. DNA damage response (DDR) elicits a complex signaling cascade, which includes the induction of several ncRNA species. Recent studies indicate that ncRNAs are major regulators of the DDR. DNA-damage induced ncRNAs contribute to regulation of cell cycle, apoptosis and DNA repair, and thus play a key role in maintaining genome stability. This review summarizes the role of ncRNAs in DNA damage and repair.
doi:10.1016/j.febslet.2013.05.006
PMCID: PMC3710463  PMID: 23684639
noncoding RNAs; DNA damage; Repair; miRNAs; Long noncoding RNAs; Genome Integrity
6.  The cellular etiology of chromosome translocations 
Current opinion in cell biology  2013;25(3):357-364.
Chromosome translocations are the most severe form of genome defect. Translocations represent the end product of a series of cellular mistakes and they form after cells suffer multiple DNA double strand breaks (DSBs), which evade the surveillance mechanisms that usually eliminate them. Rather than being accurately repaired, translocating DSBs are misjoined to form aberrant fusion chromosomes. Although translocations have been extensively characterized using cytological methods and their pathological relevance in cancer and numerous other diseases is well established, how translocations form in the context of the intact cell nucleus is poorly understood. A combination of imaging approaches and biochemical methods to probe genome architecture and chromatin structure suggest that the spatial organization of the genome and features of chromatin, including sequence properties, higher order chromatin structure and histone modifications, are key determinants of translocation formation.
doi:10.1016/j.ceb.2013.02.015
PMCID: PMC3688675  PMID: 23498663
7.  DNA damage, chromatin, and transcription: the trinity of aging 
Current opinion in cell biology  2012;24(6):724-730.
Aging brings about numerous cellular defects. Amongst the most prominent are elevated levels of persistent DNA damage, changes to chromatin structure and epigenetic modifications, and alterations of global transcription programs. These are not independent events and recent work begins to shed light on the intricate interplay between these aging-related defects.
doi:10.1016/j.ceb.2012.07.005
PMCID: PMC3524355  PMID: 22902297
8.  A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines 
Oncotarget  2013;4(12):2271-2287.
LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions.
We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences.
The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.
PMCID: PMC3926826  PMID: 24345856
LINE-1 retrotransposons; reverse transcriptase; transcriptome; miRNAs; DNA:RNA hybrids; cancer genome; reverse transcriptase inhibitor
9.  Eliminating the impact of the Impact Factor 
The Journal of Cell Biology  2013;201(5):651-652.
doi:10.1083/jcb.201304162
PMCID: PMC3664712  PMID: 23690180
10.  Cell biology: At the center of modern biomedicine 
The Journal of Cell Biology  2012;199(1):7-8.
How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.
doi:10.1083/jcb.201209062
PMCID: PMC3461513  PMID: 23027898
11.  The JCB DataViewer scales up 
The Journal of Cell Biology  2012;198(3):271-272.
One of the major forces driving the birth of the field of cell biology was the application of electron microscopy to cells. Today, virtual nanoscopy has brought electron microscopy and the cell biology community to a new frontier in biological imaging and cell biological inquiry. The Journal of Cell Biology is pleased to announce that the JCB DataViewer is “going big” to host electron microscopy data at a whole new scale.
doi:10.1083/jcb.201207117
PMCID: PMC3413368  PMID: 22869591
12.  Biogenesis of Nuclear Bodies 
The nucleus is unique amongst cellular organelles in that it contains a myriad of discrete suborganelles. These nuclear bodies are morphologically and molecularly distinct entities, and they host specific nuclear processes. Although the mode of biogenesis appears to differ widely between individual nuclear bodies, several common design principles are emerging, particularly, the ability of nuclear bodies to form de novo, a role of RNA as a structural element and self-organization as a mode of formation. The controlled biogenesis of nuclear bodies is essential for faithful maintenance of nuclear architecture during the cell cycle and is an important part of cellular responses to intra- and extracellular events.
The different nuclear bodies in the cell nucleus have distinct components and are sites for different processes. But they share the ability to self-organize, form de novo in certain conditions, and use RNA as a structural element.
doi:10.1101/cshperspect.a000711
PMCID: PMC2982170  PMID: 21068152
13.  Chromatin maintenance by a molecular motor protein 
Nucleus  2011;2(6):591-600.
The kinesin motor protein KIF4 performs essential functions in mitosis. Like other mitotic kinesins, loss of KIF4 causes spindle defects, aneuploidy, genomic instability and ultimately tumor formation. However, KIF4 is unique among molecular motors in that it resides in the cell nucleus throughout interphase, suggesting a non-mitotic function as well. Here we identify a novel cellular function for a molecular motor protein by demonstrating that KIF4 acts as a modulator of large-scale chromatin architecture during interphase. KIF4 binds globally to chromatin and its absence leads to chromatin decondensation and loss of heterochromatin domains. KIF4-dependent chromatin decondensation has functional consequences by causing replication defects and global mis-regulation of gene expression programs. KIF4 exerts its function in chromatin architecture via regulation of ADP-ribosylation of core and linker histones and by physical interaction and recruitment of chromatin assembly proteins during S-phase. These observations document a novel function for a molecular motor protein in establishment and maintenance of higher order chromatin structure.
doi:10.4161/nucl.2.6.18044
PMCID: PMC3324347  PMID: 22130187
14.  Minimizing the “Re” in Review 
The Journal of Cell Biology  2012;197(3):345-346.
There is a troubling trend in scientific publishing for manuscripts to undergo multiple, often lengthy, rounds of review, resulting in significant delays to publication. JCB is announcing new procedures to streamline its editorial process and eliminate unnecessary delays.
doi:10.1083/jcb.201203056
PMCID: PMC3341154  PMID: 22547404
15.  The Meaning of Gene Positioning 
Cell  2008;135(1):9-13.
There is no doubt that genomes are organized nonrandomly in the nucleus of higher eukaryotes. But what is the functional relevance of this nonrandomness? In this Essay, we explore the biological meaning of spatial gene positioning by examining the functional link between the activity of a gene and its radial position in the nucleus.
doi:10.1016/j.cell.2008.09.026
PMCID: PMC3478881  PMID: 18854147
16.  The emerging role of nuclear architecture in DNA repair and genome maintenance 
DNA repair and maintenance of genome stability are crucial to cellular and organismal function, and defects in these processes have been implicated in cancer and ageing. Detailed molecular, biochemical and genetic analyses have outlined the molecular framework involved in cellular DNA-repair pathways, but recent cell-biological approaches have revealed important roles for the spatial and temporal organization of the DNA-repair machinery during the recognition of DNA lesions and the assembly of repair complexes. It has also become clear that local higher-order chromatin structure, chromatin dynamics and non-random global genome organization are key factors in genome maintenance. These cell-biological features of DNA repair illustrate an emerging role for nuclear architecture in multiple aspects of genome maintenance.
doi:10.1038/nrm2651
PMCID: PMC3478884  PMID: 19277046
17.  Ranked retrieval of segmented nuclei for objective assessment of cancer gene repositioning 
BMC Bioinformatics  2012;13:232.
Background
Correct segmentation is critical to many applications within automated microscopy image analysis. Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH), followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented subset remains a challenging task.
Results
Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9 (p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer. Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical comparisons against a pooled normal (benign) gene position distribution.
Conclusions
Accurate segmentation is necessary to automate quantitative image analysis for applications such as gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of reducing or even eliminating the need to select segmented objects by hand and represents a significant improvement over binary classification. The method can be extended to other high-throughput applications requiring accurate detection of cells or nuclei across a range of biomedical applications.
doi:10.1186/1471-2105-13-232
PMCID: PMC3484015  PMID: 22971117
18.  Higher-order Genome Organization in Human Disease 
Genomes are organized into complex higher-order structures by folding of the DNA into chromatin fibers, chromosome domains, and ultimately chromosomes. The higher-order organization of genomes is functionally important for gene regulation and control of gene expression programs. Defects in how chromatin is globally organized are relevant for physiological and pathological processes. Mutations and transcriptional misregulation of several global genome organizers are linked to human diseases and global alterations in chromatin structure are emerging as key players in maintenance of genome stability, aging, and the formation of cancer translocations.
Defects in proteins that control chromatin organization generate architectural changes that increase sensitivity to DNA damage, leading to cancer and various developmental disorders.
doi:10.1101/cshperspect.a000794
PMCID: PMC2908770  PMID: 20591991
19.  RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E) 
Nature  2011;480(7377):387-390.
Summary
Activated RAS promotes dimerization of members of the RAF kinase family1-3. ATP-competitive RAF inhibitors activate ERK signaling4-7 by transactivating RAF dimers4. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumor-specific inhibition of ERK signaling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbor mutant BRAF(V600E)8. However, resistance invariably develops. Here, we identify a novel resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61kd variant form of BRAF(V600E) that lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) exhibits enhanced dimerization in cells with low levels of RAS activation, as compared to full length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signaling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumors of six of 19 patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signaling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.
doi:10.1038/nature10662
PMCID: PMC3266695  PMID: 22113612
20.  The lamin protein family 
Genome Biology  2011;12(5):222.
Summary
The lamins are the major architectural proteins of the animal cell nucleus. Lamins line the inside of the nuclear membrane, where they provide a platform for the binding of proteins and chromatin and confer mechanical stability. They have been implicated in a wide range of nuclear functions, including higher-order genome organization, chromatin regulation, transcription, DNA replication and DNA repair. The lamins are members of the intermediate filament (IF) family of proteins, which constitute a major component of the cytoskeleton. Lamins are the only nuclear IFs and are the ancestral founders of the IF protein superfamily. Lamins polymerize into fibers forming a complex protein meshwork in vivo and, like all IF proteins, have a tripartite structure with two globular head and tail domains flanking a central α-helical rod domain, which supports the formation of higher-order polymers. Mutations in lamins cause a large number of diverse human diseases, collectively known as the laminopathies, underscoring their functional importance.
doi:10.1186/gb-2011-12-5-222
PMCID: PMC3219962  PMID: 21639948
21.  Mapping of lamin A- and progerin-interacting genome regions 
Chromosoma  2012;121(5):447-464.
Mutations in the A-type lamins A and C, two major components of the nuclear lamina, cause a large group of phenotypically diverse diseases collectively referred to as laminopathies. These conditions often involve defects in chromatin organization. However, it is unclear whether A-type lamins interact with chromatin in vivo and whether aberrant chromatin–lamin interactions contribute to disease. Here, we have used an unbiased approach to comparatively map genome-wide interactions of gene promoters with lamin A and progerin, the mutated lamin A isoform responsible for the premature aging disorder Hutchinson–Gilford progeria syndrome (HGPS) in mouse cardiac myoytes and embryonic fibroblasts. We find that lamin A-associated genes are predominantly transcriptionally silent and that loss of lamin association leads to the relocation of peripherally localized genes, but not necessarily to their activation. We demonstrate that progerin induces global changes in chromatin organization by enhancing interactions with a specific subset of genes in addition to the identified lamin A-associated genes. These observations demonstrate disease-related changes in higher order genome organization in HGPS and provide novel insights into the role of lamin–chromatin interactions in chromatin organization.
Electronic supplementary material
The online version of this article (doi:10.1007/s00412-012-0376-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s00412-012-0376-7
PMCID: PMC3443488  PMID: 22610065
22.  Potent and Selective Small Molecule Inhibitors of Specific Isoforms of Cdc2-like Kinases (Clk) and Dual Specificity Tyrosine-Phosphorylation-Regulated Kinases (Dyrk) 
Continued examination of substituted 6-arylquinazolin-4-amines as Clk4 inhibitors resulted in selective inhibitors of Clk1, Clk4, Dyrk1A and Dyrk1B. Several of the most potent inhibitors were validated as being highly selective within a comprehensive kinome scan.
doi:10.1016/j.bmcl.2011.02.114
PMCID: PMC3085634  PMID: 21450467
Clk1; Clk2; Clk3; Clk4; Dyrk1A; Dyrk1B; Pre-mRNA splicing; kinase inhibition; quinazoline
23.  New Tools for JCB 
The Journal of Cell Biology  2011;194(5):663-664.
New technologies and approaches in cell biology research necessitate new venues for information sharing and publication. JCB continues its support of innovation in publishing with the launch of Tools, a new article type for the description of methods and high-throughput datasets, and of a new interface for the JCB DataViewer for hosting high-content screening datasets in their entirety.
doi:10.1083/jcb.201108096
PMCID: PMC3171115  PMID: 21893594
24.  In vitro generation of human cells with cancer stem cell properties 
Nature cell biology  2011;13(9):1051-1061.
Cancer stem cells (CSCs) have been implicated in the maintenance and progression of several types of cancer. The origin and cellular properties of human CSCs are poorly characterized. Here we show that CSC-like cells can be generated in vitro by oncogenic reprogramming of human somatic cells during neoplastic transformation. We find that in vitro transformation confers stem cell properties to primary differentiated fibroblasts, including the ability to self-renew and to differentiate along multiple lineages. Tumours induced by transformed fibroblasts are hierarchically-organized and the cells which act as CSCs to initiate and maintain tumour growth are marked by the stage-specific embryonic antigen SSEA-1. Heterogeneous lineages of cancer cells in the bulk of the tumour arise through differentiation of SSEA-1+ fibroblasts and differentiation is associated with loss of tumorigenic potential. These findings establish an experimental system to characterize cellular and molecular properties of human CSCs and demonstrate that somatic cells have the potential to de-differentiate and acquire properties of CSCs.
doi:10.1038/ncb2308
PMCID: PMC3166977  PMID: 21857669
25.  Identification of Mammalian Protein Quality Control Factors by High-Throughput Cellular Imaging 
PLoS ONE  2012;7(2):e31684.
Protein Quality Control (PQC) pathways are essential to maintain the equilibrium between protein folding and the clearance of misfolded proteins. In order to discover novel human PQC factors, we developed a high-content, high-throughput cell-based assay to assess PQC activity. The assay is based on a fluorescently tagged, temperature sensitive PQC substrate and measures its degradation relative to a temperature insensitive internal control. In a targeted screen of 1591 siRNA genes involved in the Ubiquitin-Proteasome System (UPS) we identified 25 of the 33 genes encoding for 26S proteasome subunits and discovered several novel PQC factors. An unbiased genome-wide siRNA screen revealed the protein translation machinery, and in particular the EIF3 translation initiation complex, as a novel key modulator of misfolded protein stability. These results represent a comprehensive unbiased survey of human PQC components and establish an experimental tool for the discovery of genes that are required for the degradation of misfolded proteins under conditions of proteotoxic stress.
doi:10.1371/journal.pone.0031684
PMCID: PMC3282772  PMID: 22363705

Results 1-25 (87)