Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A generalizable pre-clinical research approach for orphan disease therapy 
With the advent of next-generation DNA sequencing, the pace of inherited orphan disease gene identification has increased dramatically, a situation that will continue for at least the next several years. At present, the numbers of such identified disease genes significantly outstrips the number of laboratories available to investigate a given disorder, an asymmetry that will only increase over time. The hope for any genetic disorder is, where possible and in addition to accurate diagnostic test formulation, the development of therapeutic approaches. To this end, we propose here the development of a strategic toolbox and preclinical research pathway for inherited orphan disease. Taking much of what has been learned from rare genetic disease research over the past two decades, we propose generalizable methods utilizing transcriptomic, system-wide chemical biology datasets combined with chemical informatics and, where possible, repurposing of FDA approved drugs for pre-clinical orphan disease therapies. It is hoped that this approach may be of utility for the broader orphan disease research community and provide funding organizations and patient advocacy groups with suggestions for the optimal path forward. In addition to enabling academic pre-clinical research, strategies such as this may also aid in seeding startup companies, as well as further engaging the pharmaceutical industry in the treatment of rare genetic disease.
PMCID: PMC3458970  PMID: 22704758
Orphan disease therapy; Preclinical drug development; Generalizable screening methods; Translational toolbox
2.  Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor 
Nucleic Acids Research  2004;32(2):e18.
Rapid (<2 min) and quantitative genotyping for single nucleotide polymorphisms (SNPs) associated with spinal muscular atrophy was done using a reusable (approximately 80 cycles of application) fibre-optic biosensor over a clinically relevant range (0–4 gene copies). Sensors were functionalized with oligonucleotide probes immobilized at high density (∼7 pmol/cm2) to impart enhanced selectivity for SNP discrimination and used in a total internal reflection fluorescence detection motif to detect 202 bp PCR amplicons from patient samples. Real-time detection may be done over a range of ionic strength conditions (0.1–1.0 M) without stringency rinsing to remove non-selectively bound materials and without loss of selectivity, permitting a means for facile sample preparation. By using the time-derivative of fluorescence intensity as the analytical parameter, linearity of response may be maintained while allowing for significant reductions in analysis time (10–100-fold), permitting for the completion of measurements in under 1 min.
PMCID: PMC373370  PMID: 14742865

Results 1-2 (2)