Search tips
Search criteria

Results 1-25 (136)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Stand Up to Cancer Phase Ib Study of Pan-Phosphoinositide-3-Kinase Inhibitor Buparlisib With Letrozole in Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer 
Journal of Clinical Oncology  2014;32(12):1202-1209.
Buparlisib, an oral reversible inhibitor of all class I phosphoinositide-3-kinases, has shown antitumoral activity against estrogen receptor (ER)-positive breast cancer cell lines and xenografts, alone and with endocrine therapy. This phase Ib study evaluated buparlisib plus letrozole's safety, tolerability, and preliminary activity in patients with metastatic ER-positive breast cancer refractory to endocrine therapy.
Patients and Methods
Patients received letrozole and buparlisib in two different administration schedules. Outcomes were assessed by standard solid-tumor phase I methods. [18F]fluorodeoxyglucose–positron emission tomography/computed tomography ([18F]FDG-PET/CT) scans were done at baseline and 2 weeks after treatment initiation. Tumor blocks were collected for phosphoinositide-3-kinase pathway mutation analysis.
Fifty-one patients were allocated sequentially to continuous or intermittent (five on/two off days) buparlisib administration on an every-4-week schedule. Buparlisib's maximum-tolerated dose (MTD) was 100 mg/d. Common drug-related adverse events included ≤ grade 2 hyperglycemia, nausea, fatigue, transaminitis, and mood disorders. The clinical benefit rate (lack of progression ≥ 6 months) among all patients treated at the MTD was 31%, including two objective responses in the continuous dose arm. Of seven patients remaining on treatment ≥ 12 months, three had tumors with PIK3CA hot-spot mutation. Patients exhibiting metabolic disease progression by [18F]FDG-PET/CT scan at 2 weeks progressed rapidly on therapy.
The letrozole and buparlisib combination was safe, with reversible toxicities regardless of schedule administration. Clinical activity was observed independent of PIK3CA mutation status. No metabolic response by [18F]FDG-PET/CT scan at 2 weeks was associated with rapid disease progression. Phase III trials of buparlisib and endocrine therapy in patients with ER-positive breast cancer are ongoing.
PMCID: PMC3986383  PMID: 24663045
2.  What a Tangled Web We Weave: Emerging Resistance Mechanisms to Inhibition of the Phosphoinositide 3-kinase Pathway 
Cancer discovery  2013;3(12):10.1158/2159-8290.CD-13-0063.
The phosphoinositide 3-kinase (PI3K) pathway is one of the most frequently mutated pathways in cancer, and is actively being pursued as a therapeutic target. Despite the importance of the PI3K pathway in cancer, durable responses to PI3K-pathway targeted therapies are uncommon with monotherapy. Several in vitro and xenograft models have elucidated compensatory signaling and genomic changes which may limit the therapeutic effectiveness of PI3K inhibitors in the clinic. Future clinical trials with prospective evaluation of tumor signaling and genomic changes are likely to identify novel resistance mechanisms as well as subsets of patients who may derive maximal benefit from PI3K pathway inhibitors.
PMCID: PMC3864542  PMID: 24265156
phosphoinositide 3-kinase; resistance; mTOR; cancer; signaling
3.  BRD7 regulates XBP1s' activity and glucose homeostasis through its interaction with the regulatory subunits of PI3K 
Cell metabolism  2014;20(1):73-84.
Bromodomain-containing protein 7 (BRD7) is a member of the bromodomain-containing protein family that is known to play role as tumor suppressors. Here, we show that BRD7 is a component of the unfolded protein response (UPR) signaling through its ability to regulate X-box binding protein1 (XBP1) nuclear translocation. BRD7 interacts with the regulatory subunits of phosphatidyl-inositol3-kinase (PI3K) and increases the nuclear translocation of both p85α/β and XBP1s. Deficiency of BRD7 blocks the nuclear translocation of XBP1s. Furthermore, our in vivo studies have shown that BRD7 protein levels are reduced in the liver of obese mice, and reinstating BRD7 levels in the liver restores XBP1s nuclear translocation, improves glucose homeostasis, and ultimately reduces the blood glucose levels in the obese and diabetic mouse models.
PMCID: PMC4079724  PMID: 24836559
Bromodomain-containing protein 7 (BRD7); X-box binding protein1 (XBP1); Endoplasmic reticulum (ER) stress; Unfolded protein response (UPR); Diabetes
5.  Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance 
Cell Cycle  2013;12(13):1987-1988.
PMCID: PMC3737294  PMID: 23759579
cancer metabolism; NADPH; aspartate aminotransferase; malic enzyme; glutamate dehydrogenase
6.  BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity 
Molecular cell  2014;54(1):193-202.
Phosphoinositide 3-kinase (PI3K) activity is important for regulating cell growth, survival and motility. We report here the identification of bromodomain-containing protein 7 (BRD7) as a p85α-interacting protein that negatively regulates PI3K signaling. BRD7 binds to the inter-SH2 (iSH2) domain of p85 through an evolutionarily conserved region located at the C-terminus of BRD7. Via this interaction, BRD7 facilitates nuclear translocation of p85α. The BRD7-dependent depletion of p85 from the cytosol impairs formation of p85/p110 complexes in the cytosol, leading to a decrease in p110 proteins and in PI3K pathway signaling. In contrast, silencing of endogenous BRD7 expression by RNAi increases the steady state level of p110 proteins and enhances Akt phosphorylation after stimulation. These data suggest that BRD7 and p110 compete for the interaction to p85. The unbound p110 protein is unstable, leading to the attenuation of PI3K activity. Therefore, BRD7 functions as a potential tumor suppressor to regulate cell growth.
PMCID: PMC4004185  PMID: 24657164
7.  Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome 
Cell  2014;156(4):771-785.
mTORC1 promotes cell growth in response to nutrients and growth factors. Insulin activates mTORC1 through the PI3K-Akt pathway, which inhibits the TSC1-TSC2-TBC1D7 complex (the TSC complex) to turn on Rheb, an essential activator of mTORC1. However, the mechanistic basis of how this pathway integrates with nutrient-sensing pathways is unknown. We demonstrate that insulin stimulates acute dissociation of the TSC complex from the lysosomal surface, where subpopulations of Rheb and mTORC1 reside. The TSC complex associates with the lysosome in a Rheb-dependent manner, and its dissociation in response to insulin requires Akt-mediated TSC2 phosphorylation. Loss of the PTEN tumor suppressor results in constitutive activation of mTORC1 through the Akt-dependent dissociation of the TSC complex from the lysosome. These findings provide a unifying mechanism by which independent pathways affecting the spatial recruitment of mTORC1 and the TSC complex to Rheb at the lysosomal surface serve to integrate diverse growth signals.
PMCID: PMC4030681  PMID: 24529379
8.  Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses 
Science (New York, N.Y.)  2011;334(6060):1278-1283.
Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys358. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys358 to Ser358 oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.
PMCID: PMC3471535  PMID: 22052977
9.  Vulnerabilities of PTEN-p53-deficient prostate cancers to compound PARP/PI3K inhibition 
Cancer discovery  2014;4(8):896-904.
Prostate cancer (CaP) is the most prevalent cancer in males and treatment options are limited for advanced forms of the disease. Loss of the PTEN and p53 tumor suppressor genes is commonly observed in CaP, while their compound loss is often observed in advanced CaP. Here we show, that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the pro-survival signalling PI3K-AKT pathway limits the efficacy of a PARP-single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human CaP cell lines and in a Pten/p53 deficient mouse model of advanced CaP. Our findings therefore identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient CaP.
PMCID: PMC4125493  PMID: 24866151
PTEN; Prostate; PARP; PI3K; Senescence
10.  Getting Knit-PI3Ky: PIK3CA Mutation Status to Direct Multimodality Therapy? 
Clinical Cancer Research  2009;15(22):6748-6750.
There is high morbidity associated with local recurrence of rectal cancer. However, the adjuvant therapies given to prevent such recurrences also have significant side effects and associated risks. The ability to select patients with the highest risk of recurrence and greatest therapeutic response will improve rectal cancer care.
PMCID: PMC3400141  PMID: 19903790
11.  Targeting metabolic scavenging in pancreatic cancer 
Pancreatic tumor metabolism is rewired to facilitate survival and growth in a nutrient-depleted environment. This leads to a unique dependence on metabolic recycling and scavenging pathways, including NAD salvage. Targeting this pathway in pancreatic cancer disrupts metabolic homeostasis and impairs tumor growth.
PMCID: PMC3930347  PMID: 24166909
12.  A Fluorescent Reporter of AMPK activity and Cellular Energy Stress 
Cell metabolism  2011;13(4):476-486.
AMP-activated protein kinase (AMPK) is activated when the AMP/ATP ratio in cells is elevated due to energy stress. Here we describe a biosensor, AMPKAR, which exhibits enhanced fluorescence resonance energy transfer (FRET) in response to phosphorylation by AMPK, allowing spatio-temporal monitoring of AMPK activity in single cells. We show that this reporter responds to a variety of stimuli that are known to induce energy stress and that the response is dependent on AMPK α1 & α2 and on the upstream kinase, LKB1. Interestingly we found that AMPK activation is confined to the cytosol in response to energy stress but can be observed in both the cytosol and nucleus in response to calcium elevation. Finally, using this probe with U2OS cells in a microfluidics device, we observed a very high cell-to-cell variability in the amplitude and time course of AMPK activation and recovery in response to pulses of glucose deprivation.
PMCID: PMC3070961  PMID: 21459332
13.  Lin28 enhances tissue repair by reprogramming cellular metabolism 
Cell  2013;155(4):778-792.
Regeneration capacity declines with age, but why juvenile organisms show enhanced tissue repair remains unexplained. Lin28a, a highly-conserved RNA binding protein expressed during embryogenesis, plays roles in development, pluripotency and metabolism. To determine if Lin28a might influence tissue repair in adults, we engineered the reactivation of Lin28a expression in several models of tissue injury. Lin28a reactivation improved hair regrowth by promoting anagen in hair follicles, and accelerated regrowth of cartilage, bone and mesenchyme after ear and digit injuries. Lin28a inhibits let-7 microRNA biogenesis; however let-7 repression was necessary but insufficient to enhance repair. Lin28a bound to and enhanced the translation of mRNAs for several metabolic enzymes, thereby increasing glycolysis and oxidative phosphorylation (OxPhos). Lin28a-mediated enhancement of tissue repair was negated by OxPhos inhibition, whereas a pharmacologically-induced increase in OxPhos enhanced repair. Thus, Lin28a enhances tissue repair in some adult tissues by reprogramming cellular bioenergetics.
PMCID: PMC3917449  PMID: 24209617
14.  Phosphorylation of BRAF by AMPK impairs BRAF-KSR1 association and cell proliferation 
Molecular cell  2013;52(2):161-172.
BRAF is an oncogenic protein kinase that drives cell growth and proliferation through the MEK-ERK signaling pathway. BRAF inhibitors have demonstrated anti-tumor efficacy in melanoma therapy, but have also found to be associated with the development of cutaneous squamous cell carcinomas (cSCC) in certain patients. Here, we report that BRAF is phosphorylated at Ser729 by AMP-activated protein kinase (AMPK), a critical energy sensor. This phosphorylation promotes the association of BRAF with 14-3-3 proteins and disrupts its interaction with the KSR1 scaffolding protein, leading to attenuation of the MEK-ERK signaling. We also show that phosphorylation of BRAF by AMPK impairs keratinocyte cell proliferation and cell cycle progression. Furthermore, AMPK activation attenuates BRAF inhibitor-induced ERK hyperactivation in keratinocytes and epidermal hyperplasia in mouse skin. Our findings reveal a mechanism for regulating BRAF signaling in response to energy stress and suggest a strategy for preventing the development of cSCC associated with BRAF-targeted therapy.
PMCID: PMC3892895  PMID: 24095280
16.  Idelalisib — A PI3Kδ Inhibitor for B-Cell Cancers 
The New England journal of medicine  2014;370(11):1061-1062.
PMCID: PMC4088325  PMID: 24620870
17.  Characterization of PXK as a Protein Involved in Epidermal Growth Factor Receptor Trafficking ▿  
Molecular and Cellular Biology  2010;30(7):1689-1702.
The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor.
PMCID: PMC2838084  PMID: 20086096
18.  Metabolic and Functional Genomic Studies Identify Deoxythymidylate Kinase as a target in LKB1 Mutant Lung Cancer 
Cancer discovery  2013;3(8):870-879.
The LKB1/STK11 tumor suppressor encodes a serine/threonine kinase which coordinates cell growth, polarity, motility, and metabolism. In non-small cell lung cancer, LKB1 is somatically inactivated in 25-30% of cases, often concurrently with activating KRAS mutation. Here, we employed an integrative approach to define novel therapeutic targets in KRAS-driven LKB1 mutant lung cancers. High-throughput RNAi screens in lung cancer cell lines from genetically engineered mouse models driven by activated KRAS with or without coincident Lkb1 deletion led to the identification of Dtymk, encoding deoxythymidylate kinase which catalyzes dTTP biosynthesis, as synthetically lethal with Lkb1 deficiency in mouse and human lung cancer lines. Global metabolite profiling demonstrated that Lkb1-null cells had striking decreases in multiple nucleotide metabolites as compared to the Lkb1-wt cells. Thus, LKB1 mutant lung cancers have deficits in nucleotide metabolism conferring hypersensitivity to DTYMK inhibition, suggesting that DTYMK is a potential therapeutic target in this aggressive subset of tumors.
PMCID: PMC3753578  PMID: 23715154
LKB1; KRAS; DTYMK; CHEK1; NSCLC; GEMM-derived cell line; genome wide RNAi screen; metabolic profiling
19.  microRNA-antagonism regulates breast cancer stemness and metastasis via TET family dependent chromatin remodeling 
Cell  2013;154(2):311-324.
Tumor cells metastasize to distant organs through genetic and epigenetic alterations, including changes in microRNA (miR) expression. Here we find miR-22 triggers epithelial-mesenchymal transition (EMT), enhances invasiveness and promotes metastasis in mouse xenografts. In a conditional mammary gland-specific transgenic (TG) mouse model, we show that miR-22 enhances mammary gland side-branching, expands the stem cell compartment, and promotes tumor development. Critically, miR-22 promotes aggressive metastatic disease in MMTV-miR-22 TG mice, as well as compound MMTV-neu or -PyVT-miR-22 TG mice. We demonstrate that miR-22 exerts its metastatic potential by silencing anti-metastatic miR-200 through direct targeting of the TET (Ten eleven translocation) family of methylcytocine dioxygenases, thereby inhibiting demethylation of the mir-200 promoter. Finally, we show that miR-22 overexpression correlates with poor clinical outcomes and silencing of the TET-miR-200 axis in patients. Taken together, our findings implicate miR-22 as a crucial epigenetic modifier and promoter of EMT and breast cancer stemness towards metastasis.
PMCID: PMC3767157  PMID: 23830207
20.  Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism 
Cancer research  2013;73(14):4429-4438.
Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation while increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.
PMCID: PMC3930683  PMID: 23687346
21.  Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation 
Molecular cell  2009;33(2):237-247.
The LKB1 – AMPK signaling pathway serves as a critical cellular sensor coupling energy homeostasis to cell growth, proliferation and survival. However, how tumor cells suppress this signaling pathway to gain growth advantage under conditions of energy stress is largely unknown. Here, we show that AMPK activation is suppressed in melanoma cells with the B-RAF V600E mutation and that down-regulation of B-RAF signaling activates AMPK. We find that in these cells LKB1 is phosphorylated by ERK and Rsk, two kinases downstream of B-RAF, and that this phosphorylation compromises the ability of LKB1 to bind and activate AMPK. Furthermore, expression of a phosphorylation-deficient mutant of LKB1 allows activation of AMPK and inhibits melanoma cell proliferation and anchorage-independent cell growth. Our findings provide a molecular linkage between the LKB1-AMPK and the RAF-MEK-ERK pathways and suggest that suppression of LKB1 function by B-RAF V600E plays an important role in B-RAF V600E-driven tumorigenesis.
PMCID: PMC2715556  PMID: 19187764
22.  Depletion of a Putatively Druggable Class of Phosphatidylinositol Kinases Inhibits Growth of p53-Null Tumors 
Cell  2013;155(4):844-857.
Here, we show that a subset of breast cancers express high levels of the type 2 phosphatidylinositol-5-phosphate 4-kinases α and/or β (PI5P4Kα and β) and provide evidence that these kinases are essential for growth in the absence of p53. Knocking down PI5P4Kα and β in a breast cancer cell line bearing an amplification of the gene encoding PI5P4K β and deficient for p53 impaired growth on plastic and in xenografts. This growth phenotype was accompanied by enhanced levels of reactive oxygen species (ROS) leading to senescence. Mice with homozygous deletion of both TP53 and PIP4K2B were not viable, indicating a synthetic lethality for loss of these two genes. Importantly however, PIP4K2A−/−, PIP4K2B+/−, and TP53−/− mice were viable and had a dramatic reduction in tumor formation compared to TP53−/− littermates. These results indicate that inhibitors of PI5P4Ks could be effective in preventing or treating cancers with mutations in TP53.
PMCID: PMC4070383  PMID: 24209622
24.  PI 3-kinase and disease 
Cancer & Metabolism  2014;2(Suppl 1):O30.
PMCID: PMC4073074
25.  Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers 
Nature medicine  2008;14(12):1351-1356.
Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-α catalytic subunit (PIK3CA) 1. They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the PIK3CA mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered an inducible bitransgenic mouse model that develops lung adenocarcinomas initiated and maintained by expression of p110-α H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan PI3K/mTOR inhibitor in clinical development, led to marked tumor regression as shown by PET-CT, MRI and microscopic examination. In contrast, mouse lung cancers driven by mutant K-Ras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a MEK inhibitor, ARRY-142886, there was dramatic synergy in shrinking these K-Ras mutant cancers. These in vivo studies suggest that inhibitors of the PI3K/mTOR pathway may be active in cancers with PIK3CA mutations, and, when combined with MEK inhibitors, may effectively treat K-RAS mutated lung cancers.
PMCID: PMC2683415  PMID: 19029981

Results 1-25 (136)