Search tips
Search criteria

Results 1-25 (126)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  RNA methyltransferases involved in 5′ cap biosynthesis 
RNA Biology  2015;11(12):1597-1607.
In eukaryotes and viruses that infect them, the 5′ end of mRNA molecules, and also many other functionally important RNAs, are modified to form a so-called cap structure that is important for interactions of these RNAs with many nuclear and cytoplasmic proteins. The RNA cap has multiple roles in gene expression, including enhancement of RNA stability, splicing, nucleocytoplasmic transport, and translation initiation. Apart from guanosine addition to the 5′ end in the most typical cap structure common to transcripts produced by RNA polymerase II (in particular mRNA), essentially all cap modifications are due to methylation. The complexity of the cap structure and its formation can range from just a single methylation of the unprocessed 5′ end of the primary transcript, as in mammalian U6 and 7SK, mouse B2, and plant U3 RNAs, to an elaborate m7Gpppm6,6AmpAmpCmpm3Um structure at the 5′ end of processed RNA in trypanosomes, which are formed by as many as 8 methylation reactions. While all enzymes responsible for methylation of the cap structure characterized to date were found to belong to the same evolutionarily related and structurally similar Rossmann Fold Methyltransferase superfamily, that uses the same methyl group donor, S-adenosylmethionine; the enzymes also exhibit interesting differences that are responsible for their distinct functions. This review focuses on the evolutionary classification of enzymes responsible for cap methylation in RNA, with a focus on the sequence relationships and structural similarities and dissimilarities that provide the basis for understanding the mechanism of biosynthesis of different caps in cellular and viral RNAs. Particular attention is paid to the similarities and differences between methyltransferases from human cells and from human pathogens that may be helpful in the development of antiviral and antiparasitic drugs.
PMCID: PMC4615557  PMID: 25626080
antiviral drugs; cap; crystallography; methylation; modified nucleotides; mRNA; post-transcriptional modification; RNA maturation; RNA modification; trypanosomes
2.  A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing 
eLife  null;4:e07320.
Prp3 is an essential U4/U6 di-snRNP-associated protein whose functions and molecular mechanisms in pre-mRNA splicing are presently poorly understood. We show by structural and biochemical analyses that Prp3 contains a bipartite U4/U6 di-snRNA-binding region comprising an expanded ferredoxin-like fold, which recognizes a 3′-overhang of U6 snRNA, and a preceding peptide, which binds U4/U6 stem II. Phylogenetic analyses revealed that the single-stranded RNA-binding domain is exclusively found in Prp3 orthologs, thus qualifying as a spliceosome-specific RNA interaction module. The composite double-stranded/single-stranded RNA-binding region assembles cooperatively with Snu13 and Prp31 on U4/U6 di-snRNAs and inhibits Brr2-mediated U4/U6 di-snRNA unwinding in vitro. RNP-disrupting mutations in Prp3 lead to U4/U6•U5 tri-snRNP assembly and splicing defects in vivo. Our results reveal how Prp3 acts as an important bridge between U4/U6 and U5 in the tri-snRNP and comparison with a Prp24-U6 snRNA recycling complex suggests how Prp3 may be involved in U4/U6 reassembly after splicing.
eLife digest
Proteins are built following instructions contained within the DNA of gene sequences. This genetic information is copied into short-lived molecules, called messenger RNAs (or mRNAs), which move away from the DNA and are then decoded by the molecular machines that build proteins. However, mRNA sequences often have to be edited before they are used. Another molecular machine, called a spliceosome, carries out some of this editing.
A spliceosome is formed from a number of smaller subunits, including three RNA-protein particles that each contain one RNA molecule (called U1, U2 and U5), and one particle that contains two RNA molecules (called U4 and U6). These subunits must assemble around an unedited mRNA in a particular order so that the spliceosome can work correctly. Once the mRNA has been edited, and the spliceosome has performed its job, these complexes need to disassemble so that they are ready to be reassembled around a new mRNA molecule. A protein called Prp3 is known to be involved in these assembly, disassembly and reassembly steps. However, it is unclear how this protein performs these activities.
Liu et al. have now used structural biology and biochemical techniques to determine the three-dimensional structure of Prp3, and have shown that this protein has a “two-part” binding site that binds to the RNA molecules in the U4/U6 subunit of the spliceosome. Further analyses revealed that one of these features is only found in Prp3 and not in other types of RNA-binding proteins.
Together with previous work, Liu et al. also reveal that Prp3 can serve as a ‘bridge’ between the U4/U6 and U5 subunits of the spliceosome, and suggest how these features allow the two subunits to group together before they are incorporated into a spliceosome.
Notably, certain mutations in the gene for the Prp3 protein lead to a human eye disease called retinitis pigmentosa. In the future it will be important to investigate if the above activities are affected in the mutant variants of the Prp3 protein.
PMCID: PMC4520091  PMID: 26161500
small nuclear ribonucleoprotein particle; pre-mRNA splicing; protein–RNA interaction; X-ray crystallography; human; S. cerevisiae
3.  Distribution and frequencies of post-transcriptional modifications in tRNAs 
RNA Biology  2015;11(12):1619-1629.
Functional tRNA molecules always contain a wide variety of post-transcriptionally modified nucleosides. These modifications stabilize tRNA structure, allow for proper interaction with other macromolecules and fine-tune the decoding of mRNAs during translation. Their presence in functionally important regions of tRNA is conserved in all domains of life. However, the identities of many of these modified residues depend much on the phylogeny of organisms the tRNAs are found in, attesting for domain-specific strategies of tRNA maturation. In this work we present a new tool, tRNAmodviz web server ( for easy comparative analysis and visualization of modification patterns in individual tRNAs, as well as in groups of selected tRNA sequences. We also present results of comparative analysis of tRNA sequences derived from 7 phylogenetically distinct groups of organisms: Gram-negative bacteria, Gram-positive bacteria, cytosol of eukaryotic single cell organisms, Fungi and Metazoa, cytosol of Viridiplantae, mitochondria, plastids and Euryarchaeota. These data update the study conducted 20 y ago with the tRNA sequences available at that time.
PMCID: PMC4615829  PMID: 25611331
comparative analysis; evolution; modified nucleotides; post-transcriptional modification; RNA maturation; tRNA; tRNA modifications; tRNA sequence; web server
4.  Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases 
Scientific Reports  2016;6:38612.
Many known endoribonucleases select their substrates based on the presence of one or a few specific nucleotides at or near the cleavage site. In some cases, selectivity is also determined by the structural features of the substrate. We recently described the sequence-specific cleavage of double-stranded RNA by Mini-III RNase from Bacillus subtilis in vitro. Here, we characterized the sequence specificity of eight other members of the Mini-III RNase family from different bacterial species. High-throughput analysis of the cleavage products of Φ6 bacteriophage dsRNA indicated subtle differences in sequence preference between these RNases, which were confirmed and characterized by systematic analysis of the cleavage kinetics of a set of short dsRNA substrates. We also showed that the sequence specificities of Mini-III RNases are not reflected by different binding affinities for cognate and non-cognate sequences, suggesting that target selection occurs predominantly at the cleavage step. We were able to identify two structural elements, the α4 helix and α5b-α6 loop that were involved in target selection. Characterization of the sequence specificity of the eight Mini-III RNases may provide a basis for better understanding RNA substrate recognition by Mini-III RNases and adopting these enzymes and their engineered derivatives as tools for RNA research.
PMCID: PMC5141509  PMID: 27924926
5.  Computational modeling of RNA 3D structures, with the aid of experimental restraints 
RNA Biology  2014;11(5):522-536.
In addition to mRNAs whose primary function is transmission of genetic information from DNA to proteins, numerous other classes of RNA molecules exist, which are involved in a variety of functions, such as catalyzing biochemical reactions or performing regulatory roles. In analogy to proteins, the function of RNAs depends on their structure and dynamics, which are largely determined by the ribonucleotide sequence. Experimental determination of high-resolution RNA structures is both laborious and difficult, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that simulate either the physical process of RNA structure formation (“Greek science” approach) or utilize information derived from known structures of other RNA molecules (“Babylonian science” approach). All computational methods suffer from various limitations that make them generally unreliable for structure prediction of long RNA sequences. However, in many cases, the limitations of computational and experimental methods can be overcome by combining these two complementary approaches with each other. In this work, we review computational approaches for RNA structure prediction, with emphasis on implementations (particular programs) that can utilize restraints derived from experimental analyses. We also list experimental approaches, whose results can be relatively easily used by computational methods. Finally, we describe case studies where computational and experimental analyses were successfully combined to determine RNA structures that would remain out of reach for each of these approaches applied separately.
PMCID: PMC4152360  PMID: 24785264
RNA structure; RNA structure prediction; macromolecular modeling; bioinformatics; chemical probing
6.  RNA Bricks—a database of RNA 3D motifs and their interactions 
Nucleic Acids Research  2013;42(Database issue):D123-D131.
The RNA Bricks database (, stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions.
PMCID: PMC3965019  PMID: 24220091
7.  A toolbox for developing bioinformatics software 
Briefings in Bioinformatics  2011;13(2):244-257.
Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers.
PMCID: PMC3294241  PMID: 21803787
software development; programming; project management; software quality
8.  Rational engineering of sequence specificity in R.MwoI restriction endonuclease 
Nucleic Acids Research  2012;40(17):8579-8592.
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5′-GCNNNNNNNGC-3′ (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5′-GCCNNNNNGGC-3′. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5′-GCCNNNNNGGC-3′ sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.
PMCID: PMC3458533  PMID: 22735699
9.  SimRNAweb: a web server for RNA 3D structure modeling with optional restraints 
Nucleic Acids Research  2016;44(Web Server issue):W315-W319.
RNA function in many biological processes depends on the formation of three-dimensional (3D) structures. However, RNA structure is difficult to determine experimentally, which has prompted the development of predictive computational methods. Here, we introduce a user-friendly online interface for modeling RNA 3D structures using SimRNA, a method that uses a coarse-grained representation of RNA molecules, utilizes the Monte Carlo method to sample the conformational space, and relies on a statistical potential to describe the interactions in the folding process. SimRNAweb makes SimRNA accessible to users who do not normally use high performance computational facilities or are unfamiliar with using the command line tools. The simplest input consists of an RNA sequence to fold RNA de novo. Alternatively, a user can provide a 3D structure in the PDB format, for instance a preliminary model built with some other technique, to jump-start the modeling close to the expected final outcome. The user can optionally provide secondary structure and distance restraints, and can freeze a part of the starting 3D structure. SimRNAweb can be used to model single RNA sequences and RNA-RNA complexes (up to 52 chains). The webserver is available at
PMCID: PMC4987879  PMID: 27095203
10.  Databases and Bioinformatics Tools for the Study of DNA Repair 
DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.
PMCID: PMC3200286  PMID: 22091405
11.  Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit 
Nucleic Acids Research  2010;39(5):1903-1918.
NpmA, a methyltransferase that confers resistance to aminoglycosides was identified in an Escherichia coli clinical isolate. It belongs to the kanamycin–apramycin methyltransferase (Kam) family and specifically methylates the 16S rRNA at the N1 position of A1408. We determined the structures of apo-NpmA and its complexes with S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.4, 2.7 and 1.68 Å, respectively. We generated a number of NpmA variants with alanine substitutions and studied their ability to bind the cofactor, to methylate A1408 in the 30S subunit, and to confer resistance to kanamycin in vivo. Residues D30, W107 and W197 were found to be essential. We have also analyzed the interactions between NpmA and the 30S subunit by footprinting experiments and computational docking. Helices 24, 42 and 44 were found to be the main NpmA-binding site. Both experimental and theoretical analyses suggest that NpmA flips out the target nucleotide A1408 to carry out the methylation. NpmA is plasmid-encoded and can be transferred between pathogenic bacteria; therefore it poses a threat to the successful use of aminoglycosides in clinical practice. The results presented here will assist in the development of specific NpmA inhibitors that could restore the potential of aminoglycoside antibiotics.
PMCID: PMC3061052  PMID: 21062819
12.  Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori 
Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS > 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication, recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures. Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination. We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes.
PMCID: PMC4833421  PMID: 26961370
selection; dN/dS; recombination; population genomics; bacteria
13.  Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases 
Nucleic Acids Research  2010;38(12):4120-4132.
Sgm (Sisomicin-gentamicin methyltransferase) from antibiotic-producing bacterium Micromonospora zionensis is an enzyme that confers resistance to aminoglycosides like gentamicin and sisomicin by specifically methylating G1405 in bacterial 16S rRNA. Sgm belongs to the aminoglycoside resistance methyltransferase (Arm) family of enzymes that have been recently found to spread by horizontal gene transfer among disease-causing bacteria. Structural characterization of Arm enzymes is the key to understand their mechanism of action and to develop inhibitors that would block their activity. Here we report the structure of Sgm in complex with cofactors S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.0 and 2.1 Å resolution, respectively, and results of mutagenesis and rRNA footprinting, and protein-substrate docking. We propose the mechanism of methylation of G1405 by Sgm and compare it with other m7G methyltransferases, revealing a surprising diversity of active sites and binding modes for the same basic reaction of RNA modification. This analysis can serve as a stepping stone towards developing drugs that would specifically block the activity of Arm methyltransferases and thereby re-sensitize pathogenic bacteria to aminoglycoside antibiotics.
PMCID: PMC2896518  PMID: 20194115
14.  MODOMICS: a database of RNA modification pathways. 2008 update 
Nucleic Acids Research  2008;37(Database issue):D118-D121.
MODOMICS, a database devoted to the systems biology of RNA modification, has been subjected to substantial improvements. It provides comprehensive information on the chemical structure of modified nucleosides, pathways of their biosynthesis, sequences of RNAs containing these modifications and RNA-modifying enzymes. MODOMICS also provides cross-references to other databases and to literature. In addition to the previously available manually curated tRNA sequences from a few model organisms, we have now included additional tRNAs and rRNAs, and all RNAs with 3D structures in the Nucleic Acid Database, in which modified nucleosides are present. In total, 3460 modified bases in RNA sequences of different organisms have been annotated. New RNA-modifying enzymes have been also added. The current collection of enzymes includes mainly proteins for the model organisms Escherichia coli and Saccharomyces cerevisiae, and is currently being expanded to include proteins from other organisms, in particular Archaea and Homo sapiens. For enzymes with known structures, links are provided to the corresponding Protein Data Bank entries, while for many others homology models have been created. Many new options for database searching and querying have been included. MODOMICS can be accessed at
PMCID: PMC2686465  PMID: 18854352
15.  The architecture of the Schizosaccharomyces pombe CCR4-NOT complex 
Nature Communications  2016;7:10433.
CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions.
CCR4-NOT is a protein complex involved in a variety of important genetic processes. Here, the authors report the mid-resolution structure of this complex, and model the positions and contacts between the subunits, providing structural support for the previously reported functions of the complex.
PMCID: PMC4737751  PMID: 26804377
16.  Loss of Conserved Noncoding RNAs in Genomes of Bacterial Endosymbionts 
Genome Biology and Evolution  2016;8(2):426-438.
The genomes of intracellular symbiotic or pathogenic bacteria, such as of Buchnera, Mycoplasma, and Rickettsia, are typically smaller compared with their free-living counterparts. Here we showed that noncoding RNA (ncRNA) families, which are conserved in free-living bacteria, frequently could not be detected by computational methods in the small genomes. Statistical tests demonstrated that their absence is not an artifact of low GC content or small deletions in these small genomes, and thus it was indicative of an independent loss of ncRNAs in different endosymbiotic lineages. By analyzing the synteny (conservation of gene order) between the reduced and nonreduced genomes, we revealed instances of protein-coding genes that were preserved in the reduced genomes but lost cis-regulatory elements. We found that the loss of cis-regulatory ncRNA sequences, which regulate the expression of cognate protein-coding genes, is characterized by the reduction of secondary structure formation propensity, GC content, and length of the corresponding genomic regions.
PMCID: PMC4779614  PMID: 26782934
endosymbionts; noncoding RNA loss; covariance models; Rfam
17.  Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase 
Nucleic Acids Research  2006;34(6):1925-1934.
The structure of Bacillus subtilis TrmB (BsTrmB), the tRNA (m7G46) methyltransferase, was determined at a resolution of 2.1 Å. This is the first structure of a member of the TrmB family to be determined by X-ray crystallography. It reveals a unique variant of the Rossmann-fold methyltransferase (RFM) structure, with the N-terminal helix folded on the opposite site of the catalytic domain. The architecture of the active site and a computational docking model of BsTrmB in complex with the methyl group donor S-adenosyl-l-methionine and the tRNA substrate provide an explanation for results from mutagenesis studies of an orthologous enzyme from Escherichia coli (EcTrmB). However, unlike EcTrmB, BsTrmB is shown here to be dimeric both in the crystal and in solution. The dimer interface has a hydrophobic core and buries a potassium ion and five water molecules. The evolutionary analysis of the putative interface residues in the TrmB family suggests that homodimerization may be a specific feature of TrmBs from Bacilli, which may represent an early stage of evolution to an obligatory dimer.
PMCID: PMC1447647  PMID: 16600901
18.  SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction 
Nucleic Acids Research  2015;44(7):e63.
RNA molecules play fundamental roles in cellular processes. Their function and interactions with other biomolecules are dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. Here, we present SimRNA: a new method for computational RNA 3D structure prediction, which uses a coarse-grained representation, relies on the Monte Carlo method for sampling the conformational space, and employs a statistical potential to approximate the energy and identify conformations that correspond to biologically relevant structures. SimRNA can fold RNA molecules using only sequence information, and, on established test sequences, it recapitulates secondary structure with high accuracy, including correct prediction of pseudoknots. For modeling of complex 3D structures, it can use additional restraints, derived from experimental or computational analyses, including information about secondary structure and/or long-range contacts. SimRNA also can be used to analyze conformational landscapes and identify potential alternative structures.
PMCID: PMC4838351  PMID: 26687716
19.  Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue 
Nucleic Acids Research  2015;44(2):940-953.
Purine nucleosides on position 9 of eukaryal and archaeal tRNAs are frequently modified in vivo by the post-transcriptional addition of a methyl group on their N1 atom. The methyltransferase Trm10 is responsible for this modification in both these domains of life. While certain Trm10 orthologues specifically methylate either guanosine or adenosine at position 9 of tRNA, others have a dual specificity. Until now structural information about this enzyme family was only available for the catalytic SPOUT domain of Trm10 proteins that show specificity toward guanosine. Here, we present the first crystal structure of a full length Trm10 orthologue specific for adenosine, revealing next to the catalytic SPOUT domain also N- and C-terminal domains. This structure hence provides crucial insights in the tRNA binding mechanism of this unique monomeric family of SPOUT methyltransferases. Moreover, structural comparison of this adenosine-specific Trm10 orthologue with guanosine-specific Trm10 orthologues suggests that the N1 methylation of adenosine relies on additional catalytic residues.
PMCID: PMC4737155  PMID: 26673726
20.  Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda2 protein 
Genome Biology  2001;2(9):research0038.1-research0038.6.
The reovirus λ2 protein catalyzes mRNA capping, that is, addition of a guanosine to the 5' end of each transcript in a 5'-to-5' orientation, as well as transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the N7 atom of the added guanosyl moiety and subsequently to the ribose 2'-O atom of the first template-encoded nucleotide. The structure of the human reovirus core has been solved at 3.6 Å resolution, revealing a series of domains that include a putative guanylyltransferase domain and two putative methyltransferase (MTase) domains. It has been suggested that the order of domains in the λ2 protein corresponds to the order of reactions in the pathway and that the m7G (cap 0) and the 2'-O-ribose (cap 1) MTase activities may be exerted by the MTase 1 and the MTase 2 domains, respectively.
We show that the reovirus MTase 1 domain shares a putative active site with the structurally characterized 2'-O-ribose MTases, including vaccinia virus cap 1 MTase, whereas the MTase 2 domain is structurally similar to glycine N-MTase.
On the basis of our analysis of the structural details we propose that the previously suggested functional assignments of the MTase 1 and MTase 2 domains should be swapped.
PMCID: PMC56899  PMID: 11574057
21.  Phylogenomics and sequence-structure-function relationships in the GmrSD family of Type IV restriction enzymes 
BMC Bioinformatics  2015;16:336.
GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA.
In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members.
Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components.
Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Electronic supplementary material
The online version of this article (doi:10.1186/s12859-015-0773-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4619093  PMID: 26493560
Restriction-Modification systems; Modification-Dependent systems; Type IV; Comparative genomics; Defense islands; Fold recognition; HNH endonuclease; ParB/Srx fold
23.  Biochemical Characterization and Validation of a Catalytic Site of a Highly Thermostable Ts2631 Endolysin from the Thermus scotoductus Phage vB_Tsc2631 
PLoS ONE  2015;10(9):e0137374.
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 104 cal mol-1). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.
PMCID: PMC4573324  PMID: 26375388
25.  An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies 
Nucleic Acids Research  2015;43(14):6714-6729.
Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.
PMCID: PMC4538814  PMID: 26117545

Results 1-25 (126)