Search tips
Search criteria

Results 1-25 (55)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
2.  Clinical application of clustered-AChR for the detection of SNMG 
Scientific Reports  2015;5:10193.
Myasthenia gravis (MG) is an autoantibody-mediated disease of the neuromuscular junction (NMJ). However, accumulating evidence has indicated that MG patients whose serum anti-acetylcholine receptor (AChR) antibodies are not detectable (serumnegative MG; SNMG) in routine assays share similar clinical features with anti-AChR antibody-positive MG patients. We hypothesized that SNMG patients would have low-affinity antibodies to AChRs that would not be detectable using traditional methods but that might be detected by binding to AChR on the cell membrane, particularly if they were clustered at the high density observed at the NMJ. We expressed AChR subunits with the clustering protein rapsyn (an AChR-associated protein at the synapse) in human embryonic kidney (HEK) cells, and we tested the binding of the antibodies using immunofluorescence. With this approach, AChR antibodies to rapsyn-clustered AChR could be detected in the sera from 45.83% (11/24) of SNMG patients, as confirmed with fluorescence-activated cell sorting (FACS). This was the first application in China of cell-based AChR antibody detection. More importantly, this sensitive (and specific) approach could significantly increase the diagnosis rate of SNMG.
PMCID: PMC4464178  PMID: 26068604
3.  Cycloheximide and Actiphenol Production in Streptomyces sp. YIM56141 Governed by Single Biosynthetic Machinery Featuring an Acyltransferase-less Type I Polyketide Synthase 
Organic Letters  2014;16(11):3072-3075.
Cycloheximide (1) and actiphenol (2) have been isolated from numerous Streptomyces species. Cloning, sequencing, and characterization of a gene cluster from Streptomyces sp. YIM65141 now establish that 1 and 2 production is governed by single biosynthetic machinery. Biosynthesis of 1 features an acyltransferase-less type I polyketide synthase to construct its carbon backbone but may proceed via 2 as a key intermediate, invoking a provocative reduction of a phenol to a cyclohexanone moiety in natural product biosynthesis.
PMCID: PMC4051428  PMID: 24815182
4.  CTCF Controls HOXA Cluster Silencing and Mediates PRC2-Repressive Higher-Order Chromatin Structure in NT2/D1 Cells 
Molecular and Cellular Biology  2014;34(20):3867-3879.
HOX cluster genes are activated sequentially in their positional order along the chromosome during vertebrate development. This phenomenon, known as temporal colinearity, depends on transcriptional silencing of 5′ HOX genes. Chromatin looping was recently identified as a conserved feature of silent HOX clusters, with CCCTC-binding factor (CTCF) binding sites located at the loop bases. However, the potential contribution of CTCF to HOX cluster silencing and the underlying mechanism have not been established. Here, we demonstrate that the HOXA locus is organized by CTCF into chromatin loops and that CTCF depletion causes significantly enhanced activation of HOXA3 to -A7, -A9 to -A11, and -A13 in response to retinoic acid, with the highest effect observed for HOXA9. Our subsequent analyses revealed that CTCF facilitates the stabilization of Polycomb repressive complex 2 (PRC2) and trimethylated lysine 27 of histone H3 (H3K27me3) at the human HOXA locus. Our results reveal that CTCF functions as a controller of HOXA cluster silencing and mediates PRC2-repressive higher-order chromatin structure.
PMCID: PMC4187707  PMID: 25135475
5.  Pathogenicity of Five Strains of Toxoplasma gondii from Different Animals to Chickens 
Toxoplasma gondii is a protozoan parasite with a broad range of intermediate hosts. Chickens as important food-producing animals can also serve as intermediate hosts. To date, experimental studies on the pathogenicity of T. gondii in broiler chickens were rarely reported. The objective of the present study was to compare the pathogenicity of 5 different T. gondii strains (RH, CN, JS, CAT2, and CAT3) from various host species origin in 10-day-old chickens. Each group of chickens was infected intraperitoneally with 5×108, 1×108, 1×107, and 1×106 tachyzoites of the 5 strains, respectively. The negative control group was mockly inoculated with PBS alone. After infection, clinical symptoms and rectal temperatures of all the chickens were checked daily. Dead chickens during acute phage of the infection were checked for T. gondii tachyzoites by microscope, while living cases were checked for T. gondii infection at day 53 post-inoculation (PI) by PCR method. Histopathological sections were used to observe the pathological changes in the dead chickens and the living animals at day 53 PI. No significant differences were found in survival periods, histopathological findings, and clinical symptoms among the chickens infected with the RH, CN, CAT2, and CAT3 strains. Histopathological findings and clinical symptoms of the JS (chicken origin) group were similar to the others. However, average survival times of infected chickens of the JS group inoculated with 5×108 and 1×108 tachyzoites were 30.0 and 188.4 hr, respectively, significantly shorter than those of the other 4 mammalian isolates. Chickens exposed to 108 of T. gondii tachyzoites and higher showed acute signs of toxoplasmosis, and the lesions were relatively more severe than those exposed to lower doses. The results indicated that the pathogenicity of JS strain was comparatively stronger to the chicken, and the pathogenicity was dose-dependent.
PMCID: PMC4416365  PMID: 25925173
Toxoplasma gondii; chicken; pathogenicity
6.  Upregulation of MicroRNA-146a by Hepatitis B Virus X Protein Contributes to Hepatitis Development by Downregulating Complement Factor H 
mBio  2015;6(2):e02459-14.
Hepatic injuries in hepatitis B virus (HBV) patients are caused by immune responses of the host. In our previous study, microRNA-146a (miR-146a), an innate immunity-related miRNA, and complement factor H (CFH), an important negative regulator of the alternative pathway of complement activation, were differentially expressed in HBV-expressing and HBV-free hepatocytes. Here, the roles of these factors in HBV-related liver inflammation were analyzed in detail. The expression levels of miR-146a and CFH in HBV-expressing hepatocytes were assessed via analyses of hepatocyte cell lines, transgenic mice, adenovirus-infected mice, and HBV-positive human liver samples. The expression level of miR-146a was upregulated in HBV-expressing Huh-7 hepatocytes, HBV-expressing mice, and patients with HBV infection. Further results demonstrated that the HBV X protein (HBx) was responsible for its effects on miR-146a expression through NF-κB-mediated enhancement of miR-146a promoter activity. HBV/HBx also downregulated the expression of CFH mRNA in hepatocyte cell lines and the livers of humans and transgenic mice. Furthermore, overexpression and inhibition of miR-146a in Huh-7 cells downregulated and upregulated CFH mRNA levels, respectively. Luciferase reporter assays demonstrated that miR-146a downregulated CFH mRNA expression in hepatocytes via 3′-untranslated-region (UTR) pairing. The overall effect of this process in vivo is to promote liver inflammation. These results demonstrate that the HBx–miR-146a–CFH–complement activation regulation pathway might play an important role in the immunopathogenesis of chronic HBV infection. These findings have important implications for understanding the immunopathogenesis of chronic hepatitis B and developing effective therapeutic interventions.
Hepatitis B virus (HBV) remains an important pathogen and can cause severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma. Although HBV was found in 1966, the molecular mechanisms of pathogenesis are still poorly understood. In the present study, we found that the HBV X protein (HBx) promoted the expression of miR-146a, an innate immunity-related miRNA, through the NF-κB signal pathway and that increasingly expressed miR-146a downregulated its target complement factor H (CFH), an important negative regulator of the complement alternative pathway, leading to the promotion of liver inflammation. We demonstrated that the HBx–miR-146a–CFH–complement activation regulation pathway is potentially an important mechanism of immunopathogenesis caused by chronic HBV infection. Our data provide a novel molecular mechanism of HBV pathogenesis and thus help to understand the correlations between the complement system, an important part of innate immunity, and HBV-associated disease. These findings will also be important to identify potential therapeutic targets for HBV infection.
PMCID: PMC4453536  PMID: 25805734
7.  Osteoprotective Effect of Cordycepin on Estrogen Deficiency-Induced Osteoporosis In Vitro and In Vivo 
BioMed Research International  2015;2015:423869.
The purpose of this study was to verify the effect of cordycepin on ovariectomized osteopenic rats. Fifty Wistar female rats used were divided into 5 groups: (1) sham-operation rats (control), (2) ovariectomized (OVX) rats with osteopenia, and (3) OVX'd rats with osteopenia treated with cordycepin (5 mg, 10 mg, and 20 mg) for 8 weeks. After the rats were treated orally with cordycepin, serum alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), serum osteocalcin (OC), homocysteine (HCY) , C-terminal crosslinked telopeptides of collagen type I (CTX) level, and oxidative stress were examined, respectively. The femoral neck was used for mechanical compression testing. At the same time, we further investigated the effect of cordycepin in vitro assay. The beneficial effects of cordycepin on improvement of osteoporosis in rats were attributable mainly to decrease ALP activity, TRAP activity, and CTX level. At the same time, cordycepin also increases the OC level in ovariectomized osteopenic rats. The histological examination clearly showed that dietary cordycepin can prevent bone loss caused by estrogen deficiency. These experimental results suggest that complement cordycepin is protective after ovariectomized osteopenic in specific way.
PMCID: PMC4385597  PMID: 25874211
8.  The complete mitochondrial genome of the gullet worm Gongylonema pulchrum: gene content, arrangement, composition and phylogenetic implications 
Parasites & Vectors  2015;8:100.
Gongylonema pulchrum (Nematoda: Gongylonematidae), a thread-like spirurid gullet worm, infects a range of mammalian definitive hosts, including cattle, pigs, equines, goats, primates and humans, and can cause gongylonemiasis.
In the present study, the complete mitochondrial (mt) genome of G. pulchrum was obtained using Long-range PCR and subsequent primer walking. The phylogenetic position of G. pulchrum within the Spiruromorpha was established using Bayesian analyses of the protein-coding genes at the amino acid level.
The length of this AT-rich (75.94%) mt genome is 13,798 bp. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding region. The gene arrangement is the same as those of Thelazia callipaeda (Thelaziidae) and Setaria digitata (Onchocercidae), but distinct from that of Heliconema longissimum (Physalopteridae). Phylogenetic analyses, based on the concatenated amino acid sequence data for all 12 protein-coding genes using Bayesian inference (BI) method, showed that G. pulchrum (Gongylonematidae) was more closely related to Spirocerca lupi (Spiruroidea) than other members of the infraorder Spiruromorpha.
The present study represents the first mt genome sequence for the family Gongylonematidae, which provides the opportunity to develop novel genetic markers for studies of epidemiology, population genetics and systematics of this nematode of human and animal health significance.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-015-0697-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4340675  PMID: 25884563
Gongylonema pulchrum; Gongylonemiasis; Mitochondrial genome; Phylogenetic analyses
9.  Cryptosporidium suis Infection in Post-Weaned and Adult Pigs in Shaanxi Province, Northwestern China 
Cryptosporidium spp., ubiquitous enteric parasitic protozoa of vertebrates, recently emerged as an important cause of economic loss and zoonosis. The present study aimed to determine the distribution and species of Cryptosporidium in post-weaned and adult pigs in Shaanxi province, northwestern China. A total of 1,337 fresh fecal samples of post-weaned and adult pigs were collected by sterile disposable gloves from 8 areas of Shaanxi province. The samples were examined by Sheather’s sugar flotation technique and microscopy at×400 magnification for Cryptosporidium infection, and the species in positive samples was further identified by PCR amplification of the small subunit (SSU) rRNA gene. A total of 44 fecal samples were successfully amplified by the nested PCR of the partial SSU rRNA, with overall prevalence of 3.3%. The average prevalence of Cryptosporidium infection in each pig farms ranged from 0 to 14.4%. Species identification by sequencing of SSU rRNA gene revealed that 42 (3.1%) samples were Cryptosporidium suis and 2 (0.15%) were Cryptosporidium scrofarum. C. suis had the highest prevalence (7.5%) in growers and the lowest in breeding pigs (0.97%). C. suis was the predominant species in pre-weaned and adult pigs, while C. scrofarum infected pigs older than 3 months only. A season-related difference of C. suis was observed in this study, with the highest prevalence in autumn (5.5%) and the lowest (1.7%) in winter. The present study provided basic information for control of Cryptosporidium infection in pigs and assessment of zoonotic transmission of pigs in Shaanxi province, China.
PMCID: PMC4384797  PMID: 25748718
Cryptosporidium; pig; SSU rRNA; Shaanxi province; China
10.  USP7 overexpression predicts a poor prognosis in lung squamous cell carcinoma and large cell carcinoma 
Tumour Biology  2014;36(3):1721-1729.
In non-small cell lung cancer (NSCLC), both USP7 expression and p53 gene status were reported to be an indicator of poor prognosis in adenocarcinoma patients; however, its roles and mechanisms in lung squamous cell carcinoma and large cell carcinoma need to be clarified. The USP7 expression was examined in NSCLC tumors (excluding adenocarcinoma), their corresponding non-tumorous tissues, and NSCLC cells. Then, the prognostic role of USP7 was analyzed in 110 NSCLC samples (excluding the adenocarcinoma). Finally, the roles and mechanisms of USP7 in the proliferation, metastasis, and invasion of a NSCLC cell were assessed using a specific vshRNA. The USP7 expression was higher in NSCLC tissues compared to non-tumorous samples, accordingly, the high level of USP7 was detected in NSCLC cell lines compared with HBE cell. After the USP7 downregulation, the H460 cells exhibited decreased metastasis/invasion in vitro and in vivo. The preliminary mechanism study indicated overexpression of USP7 might regulate the p53-MDM2 pathway by inducing the MDM2 de-ubiquitination and subsequent stabilization, which resulted in the upregulation of the Bad phosphorylation. Additionally, we also found that USP7 might induce cell epithelial-mesenchymal transition to enhance the cell invasive ability. Clinically, USP7 overexpression significantly correlated with malignant phenotype. Furthermore, the 5-year overall survival in patients with USP7low was higher than that of USP7high. Multivariate analysis showed USP7 overexpression was an independent prognostic marker for these cancers. USP7 overexpression may regulate the survival and invasive properties of squamous cell carcinoma and large cell carcinoma cells, and may serve as a molecular target.
Electronic supplementary material
The online version of this article (doi:10.1007/s13277-014-2773-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4375295  PMID: 25519684
Lung cancer; USP7; Prognosis; Apoptosis
11.  The effects of Cordyceps sinensis phytoestrogen on estrogen deficiency-induced osteoporosis in Ovariectomized rats 
Isoflavones are naturally occurring plant chemicals belonging to the “phytoestrogen” class. The aim of the present study was to examine the effects of isoflavones obtained from Cordyceps sinensis (CSIF) on development of estrogen deficiency-induced osteoporosis in ovariectomized rats.
After the rats were treated orally with CSIF, serum alkaline phosphatase (ALP), tartarate resistant acid phosphatase (TRAP), serum osteocalcin (OC), homocysteine (HCY), C-terminal crosslinked telopeptides of collagen type I (CTX), estradiol and interferonγ (IFN-γ) level were examined. At the same time, the urine calcium, plasma calcium, plasma phosphorus and the mass of uterus, thymus and body were also examined.
The beneficial effects of CSIF on improvement of osteoporosis in rats were attributable mainly to decrease ALP activity, TRAP activity, CTX level and IFN-γ level. At the same time, CSIF also increase the OC and estradiol level in ovariectomized osteopenic rats. The histological examination clearly showed that dietary CSIF can prevent bone loss caused by estrogen deficiency.
The significant estrogenic activity of CSIF demonstrated that CSIF has significant estrogenic effects in OVX rats.
PMCID: PMC4302055  PMID: 25496560
Cordyceps sinensis; Isoflavones; Osteoporosis; Phytoestrogen; Estrogens
12.  Overactivation of Mitogen-Activated Protein Kinase and Suppression of Mitofusin-2 Expression Are Two Independent Events in High Mobility Group Box 1 Protein–Mediated T Cell Immune Dysfunction 
High mobility group box 1 protein (HMGB1), a critical proinflammatory cytokine, has recently been identified to be an immunostimulatory signal involved in sepsis-related immune dysfunction when released extracellularly, but the potential mechanism involved remains elusive. Here, we showed that the treatment with HMGB1 in vitro inhibited T lymphocyte immune response and expression of mitofusin-2 (Mfn-2; a member of the mitofusin family) in a dose- and time-dependent manner. Upregulation of Mfn-2 expression attenuated the suppressive effect of HMGB1 on T cell immune function. The phosphorylation of both extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) was markedly upregulated by treating with high amount of HMGB1, while pretreatment with ERK1/2 and p38 MAPK-specific inhibitors (U0126 and SB203580) could attenuate suppression of T cell immune function and nuclear factor of activated T cell (NFAT) activation induced by HMGB1, respectively. HMGB1-induced activity of ERK1/2 and p38 was not fully inhibited in the presence of U0126 or SB203580. Interestingly, overexpression of Mfn-2 had no marked effect on HMGB1-mediated activation of MAPK, but could attenuate the suppressive effect of HMGB1 on the activity of NFAT. Thus, the mechanisms involved in HMGB1-induced T cell immune dysfunction in vitro at least partly include suppression of Mfn-2 expression, overactivation of ERK1/2, p38 MAPK, and intervention of NFAT activation, while the protective effect of Mfn-2 on T cell immune dysfunction induced by HMGB1 is dependent on other signaling pathway associated with NFAT, but not MAPK. Taken together, we conclude that overactivation of MAPK and suppression of Mfn-2 expression are two independent events in HMGB1-mediated T cell immune dysfunction.
PMCID: PMC3760027  PMID: 23697559
13.  Characterization of the Intergenic Spacer rDNAs of Two Pig Nodule Worms, Oesophagostomum dentatum and O. quadrispinulatum 
The Scientific World Journal  2014;2014:147963.
The characteristics of the intergenic spacer rDNAs (IGS rDNAs) of Oesophagostomum dentatum and O. quadrispinulatum isolated from pigs in different geographical locations in Mainland China were determined, and the phylogenetic relationships of the two species were reconstructed using the IGS rDNA sequences. The organization of the IGS rDNA sequences was similar to their organization in other eukaryotes. The 28S-18S IGS rDNA sequences of both O. dentatum and O. quadrispinulatum were found to have variable lengths, that is, 759–762 bp and 937–1128 bp, respectively. All of the sequences contained direct repeats and inverted repeats. The length polymorphisms were related to the different numbers and organization of repetitive elements. Different types and numbers of repeats were found between the two pig nodule species, and two IGS structures were found within O. quadrispinulatum. Phylogenetic analysis showed that all O. dentatum isolates were clustered into one clade, but O. quadrispinulatum isolates from different origins were grouped into two distinct clusters. These results suggested independent species and the existence of genotypes or subspecies within pig nodule worms. Different types and numbers of repeats and IGS rDNA structures could serve as potential markers for differentiating these two species of pig nodule worms.
PMCID: PMC4147281  PMID: 25197691
14.  Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants 
Parasites & Vectors  2014;7:319.
Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels.
In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing.
The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae.
The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants.
PMCID: PMC4105107  PMID: 25015379
Nematodirus oiratianus; Nematodirus spathiger; Mitochondrial genome; Phylogenetic analyses
15.  Chrysin Suppressed Inflammatory Responses and the Inducible Nitric Oxide Synthase Pathway after Spinal Cord Injury in Rats 
Chrysin (CH), a natural plant flavonoid, has shown a variety of beneficial effects. Our present study was conducted to evaluate the therapeutic potential of CH three days after spinal cord injury (SCI) in rats and to probe the underlying neuroprotective mechanisms. SCI was induced using the modified weight-drop method in Wistar rats. Then, they were treated with saline or CH by doses of 30 and 100 mg/kg for 26 days. Neuronal function was assessed with the Basso Beattle Bresnahan locomotor rating scale (BBB). The water content of spinal cord was determined after traumatic SCI. The NF-κB p65 unit, TNF-α, IL-1β and IL-6 in serums, as well as the apoptotic marker, caspase-3, of spinal cord tissues were measured using commercial kits. The protein level and activity of inducible nitric oxide synthase (iNOS) were detected by western blot and a commercial kit, respectively. NO (nitric oxide) production was evaluated by the determination of nitrite concentration. The rats with SCI showed marked reductions in BBB scores, coupled with increases in the water content of spinal cord, the NF-κB p65 unit, TNF-α, IL-1β, IL-6, iNOS, NO production and caspase-3. However, a CH supplement dramatically promoted the recovery of neuronal function and suppressed the inflammatory factors, as well as the iNOS pathway in rats with SCI. Our findings disclose that CH improved neural function after SCI in rats, which might be linked with suppressing inflammation and the iNOS pathway.
PMCID: PMC4139843  PMID: 25014398
chrysin; spinal cord injury; neuroprotection; inflammation; inducible nitric oxide synthase
16.  Investigation of the Profile Control Mechanisms of Dispersed Particle Gel 
PLoS ONE  2014;9(6):e100471.
Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery.
PMCID: PMC4065096  PMID: 24950174
17.  First report of Cryptosporidium spp. in white yaks in China 
Parasites & Vectors  2014;7:230.
Cryptosporidium is an enteric apicomplexan parasite, which can infect yaks, leading to reduction of milk production and poor weight gain. White yak (Bos grunniens) is a unique yak breed inhabiting only in Tianzhu Tibetan Autonomous County, Gansu province, northwestern China. The objective of the present study was to molecularly determine Cryptosporidium infection and species in white yaks.
Seventy-six fecal samples from white yaks in Tianzhu Tibetan Autonomous County, Gansu province were collected. The small subunit ribosomal RNA (SSU rRNA) gene of each sample was amplified using nested PCR and sequenced. The Cryptosporidium species was determined by comparison of the obtained sequences with that of corresponding Cryptosporidium sequences available in GenBank by BLAST ( and phylogenetic analysis with maximum likelihood (ML) using PAUP*. The overall prevalence of Cryptosporidium infection in white yak was 5.26% (4/76). Species identification showed C. andersoni in one sample (collected in September), and C. bovis in three samples (one collected in November and two collected in September).
The present investigation revealed the existence of Cryptosporidium infection in white yaks in China, for the first time, and two Cryptosporidium species, namely C. andersoni and C. bovis, were identified. These findings extend the host range for Cryptosporidium spp., and also provide base-line information for further studies of molecular epidemiology and control of Cryptosporidium infection in the unique white yaks.
PMCID: PMC4033679  PMID: 24885747
Cryptosporidium spp; Genetic characterization; Prevalence; White Yak; China
18.  Development of Genetically Stable Escherichia coli Strains for Poly(3-Hydroxypropionate) Production 
PLoS ONE  2014;9(5):e97845.
Poly(3-hydroxypropionate) (P3HP) is a biodegradable and biocompatible thermoplastic. In our previous study, a pathway for P3HP production was constructed in recombinant Esecherichia coli. Seven exogenous genes in P3HP synthesis pathway were carried by two plasmid vectors. However, the P3HP production was severely suppressed by strain instability due to plasmid loss. In this paper, two strategies, chromosomal gene integration and plasmid addiction system (PAS) based on amino acid anabolism, were applied to construct a genetically stable strain. Finally, a combination of those two methods resulted in the best results. The resultant strain carried a portion of P3HP synthesis genes on chromosome and the others on plasmid, and also brought a tyrosine-auxotrophy based PAS. In aerobic fed-batch fermentation, this strain produced 25.7 g/L P3HP from glycerol, about 2.5-time higher than the previous strain with two plasmids. To the best of our knowledge, this is the highest P3HP production from inexpensive carbon sources.
PMCID: PMC4023983  PMID: 24837211
19.  The expression dynamics of IL-17 and Th17 response relative cytokines in the trachea and spleen of chickens after infection with Cryptosporidium baileyi 
Parasites & Vectors  2014;7:212.
Cryptosporidium baileyi is the dominant Cryptosporidium species in birds causing emerging health problems in the poultry industry, and is also a model to study the biology of Cryptosporidium spp.. IL-17 (also called IL-17A) is a hallmark pro-inflammatory cytokine of Th17 cells that plays an important role in several human autoimmune diseases and microbial infection disease of many animals, and it may play a role in Cryptosporidium infection.
The present study examined the mRNA level of IL-17 and Th17 response relative cytokines in the trachea and spleen of C. baileyi-infected chickens at different time points using real-time quantitative PCR (qPCR).
All examined cytokines in the trachea were up-regulated in the infected chickens compared with the uninfected control during C. baileyi infection. Significant increased IL-17 mRNA level in the trachea was observed as early as 12 h post infection (pi), peaking at 24 h pi and 10 d pi, and declining thereafter. The transcription levels of IL-17 and Th17 response relative cytokines in spleen were also significantly increased at different time points during the infection.
IL-17 was indicated to participate in the induction of inflammation during infection of some intracellular protozoan parasites. The results in the present study suggest that IL-17 may play a role in immunity against Cryptosporidium infection, and provide basic information for determining the role of Th17 cell in Cryptosporidium infection.
PMCID: PMC4036416  PMID: 24886047
Cryptosporidium baileyi; IL-17; Chicken; Immunity
20.  L-Serine Treatment May Improve Neurorestoration of Rats after Permanent Focal Cerebral Ischemia Potentially Through Improvement of Neurorepair 
PLoS ONE  2014;9(3):e93405.
The present study was conducted to clarify whether treatment with L-serine can improve the brain repair and neurorestoration of rats after permanent middle cerebral artery occlusion (pMCAO). After pMCAO, the neurological functions, brain lesion volume, and cortical injury were determined. GDNF, NGF, NCAM L1, tenascin-C, and Nogo-A levels were measured. Proliferation and differentiation of the neural stem cells (NSCs) and proliferation of the microvessels in the ischemic boundary zone of the cortex were evaluated. Treatment with L-serine (168 mg/kg body weight, i.p.) began 3 h after pMCAO and was repeated every 12 h for 7 days or until the end of the experiment. L-Serine treatment: 1) reduced the lesion volume and neuronal loss; 2) improved the recovery of neurological functions; 3) elevated the expression of nerve growth-related factors; and 4) facilitated the proliferation of endogenous NSCs and microvessels activated after pMCAO and increased the number of new-born neurons. 5) D-cycloserine, an inhibitor of serine hydroxymethyltransferase, blunted the effects of L-serine on NSC proliferation, differentiation, microvascular proliferation. In conclusions, L-serine treatment in pMCAO rats can reduce brain injury and facilitate neurorestoration which is partly associated with the improvement of proliferation of NSCs and microvessels, reconstruction of neurovascular units and resultant neurorepair. The effects of L-serine on endogenous NSC proliferation and microvascular proliferation are partly mediated by the action of L-serine as a substrate for the production of one-carbon groups used for purine and pyrimidine synthesis and modulation of the expression of some nerve growth-related factors.
PMCID: PMC3966884  PMID: 24671106
21.  Septic shock due to community-acquired Pseudomonas aeruginosa necrotizing fasciitis: A case report and literature review 
Necrotizing fasciitis is a rare but fatal infection, characterized by the rapid progression of necrosis of the fascia, skin, soft tissue and muscle. The most common bacteria associated with necrotizing fasciitis is group A streptococcus, although other pathogens have also been implicated. In the present study, a case of community-acquired necrotizing fasciitis, complicated with septic shock and multiple organ dysfunction syndromes due to Pseudomonas aeruginosa, is presented. Despite intensive medical treatment, the condition of the patient deteriorated rapidly and the patient subsequently succumbed to multiple organ failure. In view of the rapid progression and high mortality rate of this disease, early surgery, as well as novel therapeutic approaches for septic shock are required to improve the outcome for patients.
PMCID: PMC4043593  PMID: 24926341
necrotizing fasciitis; pseudomonas aeruginosa; septic shock
22.  Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History 
Molecular Biology and Evolution  2014;31(6):1475-1489.
Macaques are the most widely distributed nonhuman primates and used as animal models in biomedical research. The availability of full-genome sequences from them would be essential to both biomedical and primate evolutionary studies. Previous studies have reported whole-genome sequences from rhesus macaque (Macaca mulatta) and cynomolgus macaque (M. fascicularis, CE), both of which belong to the fascicularis group. Here, we present a 37-fold coverage genome sequence of the Tibetan macaque (M. thibetana; TM). TM is an endemic species to China belonging to the sinica group. On the basis of mapping to the rhesus macaque genome, we identified approximately 11.9 million single-nucleotide variants), of which 3.9 million were TM specific, as assessed by comparison two Chinese rhesus macaques (CR) and two CE genomes. Some genes carried TM-specific homozygous nonsynonymous variants (TSHNVs), which were scored as deleterious in human by both PolyPhen-2 and SIFT (Sorting Tolerant From Intolerant) and were enriched in the eye disease genes. In total, 273 immune response and disease-related genes carried at least one TSHNV. The heterozygosity rates of two CRs (0.002617 and 0.002612) and two CEs (0.003004 and 0.003179) were approximately three times higher than that of TM (0.000898). Polymerase chain reaction resequencing of 18 TM individuals showed that 29 TSHNVs exhibited high allele frequencies, thus confirming their low heterozygosity. Genome-wide genetic divergence analysis demonstrated that TM was more closely related to CR than to CE. We further detected unusual low divergence regions between TM and CR. In addition, after applying statistical criteria to detect putative introgression regions (PIRs) in the TM genome, up to 239,620 kb PIRs (8.84% of the genome) were identified. Given that TM and CR have overlapping geographical distributions, had the same refuge during the Middle Pleistocene, and show similar mating behaviors, it is highly likely that there was an ancient introgression event between them. Moreover, demographic inferences revealed that TM exhibited a similar demographic history as other macaques until 0.5 Ma, but then it maintained a lower effective population size until present time. Our study has provided new insight into the macaque evolutionary history, confirming hybridization events between macaque species groups based on genome-wide data.
PMCID: PMC4032132  PMID: 24648498
Tibetan macaque; whole-genome sequencing; SNVs; genetic divergence; introgression; demographic trajectories
23.  Chabertia erschowi (Nematoda) is a distinct species based on nuclear ribosomal DNA sequences and mitochondrial DNA sequences 
Parasites & Vectors  2014;7:44.
Gastrointestinal nematodes of livestock have major socio-economic importance worldwide. In small ruminants, Chabertia spp. are responsible for economic losses to the livestock industries globally. Although much attention has given us insights into epidemiology, diagnosis, treatment and control of this parasite, over the years, only one species (C. ovina) has been accepted to infect small ruminants, and it is not clear whether C. erschowi is valid as a separate species.
The first and second internal transcribed spacers (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) and the complete mitochondrial (mt) genomes of C. ovina and C. erschowi were amplified and then sequenced. Phylogenetic re-construction of 15 Strongylida species (including C. erschowi) was carried out using Bayesian inference (BI) based on concatenated amino acid sequence datasets.
The ITS rDNA sequences of C. ovina China isolates and C. erschowi samples were 852–854 bp and 862 -866 bp in length, respectively. The mt genome sequence of C. erschowi was 13,705 bp in length, which is 12 bp shorter than that of C. ovina China isolate. The sequence difference between the entire mt genome of C. ovina China isolate and that of C. erschowi was 15.33%. In addition, sequence comparison of the most conserved mt small subunit ribosomal (rrnS) and the least conserved nad2 genes among multiple individual nematodes revealed substantial nucleotide differences between these two species but limited sequence variation within each species.
The mtDNA and rDNA datasets provide robust genetic evidence that C. erschowi is a valid strongylid nematode species. The mtDNA and rDNA datasets presented in the present study provide useful novel markers for further studies of the taxonomy and systematics of the Chabertia species from different hosts and geographical regions.
PMCID: PMC3937141  PMID: 24450932
Chabertia spp; Nuclear ribosomal DNA; Internal transcribed spacer (ITS); Mitochondrial DNA; Phylogenetic analysis
24.  Investigation of Preparation and Mechanisms of a Dispersed Particle Gel Formed from a Polymer Gel at Room Temperature 
PLoS ONE  2013;8(12):e82651.
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles.
PMCID: PMC3855795  PMID: 24324817
25.  Modified Uterine Allotransplantation and Immunosuppression Procedure in the Sheep Model 
PLoS ONE  2013;8(11):e81300.
To develop an orthotopic, allogeneic, uterine transplantation technique and an effective immunosuppressive protocol in the sheep model.
In this pilot study, 10 sexually mature ewes were subjected to laparotomy and total abdominal hysterectomy with oophorectomy to procure uterus allografts. The cold ischemic time was 60 min. End-to-end vascular anastomosis was performed using continuous, non-interlocking sutures. Complete tissue reperfusion was achieved in all animals within 30 s after the vascular re-anastomosis, without any evidence of arterial or venous thrombosis. The immunosuppressive protocol consisted of tacrolimus, mycophenolate mofetil and methylprednisolone tablets. Graft viability was assessed by transrectal ultrasonography and second-look laparotomy at 2 and 4 weeks, respectively.
Viable uterine tissue and vascular patency were observed on transrectal ultrasonography and second-look laparotomy. Histological analysis of the graft tissue (performed in one ewe) revealed normal tissue architecture with a very subtle inflammatory reaction but no edema or stasis.
We have developed a modified procedure that allowed us to successfully perform orthotopic, allogeneic, uterine transplantation in sheep, whose uterine and vascular anatomy (apart from the bicornuate uterus) is similar to the human anatomy, making the ovine model excellent for human uterine transplant research.
PMCID: PMC3838404  PMID: 24278415

Results 1-25 (55)