Abstract
One of the criteria for inferring a species tree from a collection of gene trees, when gene tree incongruence is assumed to be due to incomplete lineage sorting (ILS), is Minimize Deep Coalescence (MDC). Exact algorithms for inferring the species tree from rooted, binary trees under MDC were recently introduced. Nevertheless, in phylogenetic analyses of biological data sets, estimated gene trees may differ from true gene trees, be incompletely resolved, and not necessarily rooted. In this article, we propose new MDC formulations for the cases where the gene trees are unrooted/binary, rooted/non-binary, and unrooted/non-binary. Further, we prove structural theorems that allow us to extend the algorithms for the rooted/binary gene tree case to these cases in a straightforward manner. In addition, we devise MDC-based algorithms for cases when multiple alleles per species may be sampled. We study the performance of these methods in coalescent-based computer simulations.
doi:10.1089/cmb.2011.0174
PMCID: PMC3216099
PMID: 22035329
algorithms; coalescence; dynamic programming; graph theory; phylogenetic trees
Motivation: While phylogenetic analyses of datasets containing 1000–5000 sequences are challenging for existing methods, the estimation of substantially larger phylogenies poses a problem of much greater complexity and scale.
Methods: We present DACTAL, a method for phylogeny estimation that produces trees from unaligned sequence datasets without ever needing to estimate an alignment on the entire dataset. DACTAL combines iteration with a novel divide-and-conquer approach, so that each iteration begins with a tree produced in the prior iteration, decomposes the taxon set into overlapping subsets, estimates trees on each subset, and then combines the smaller trees into a tree on the full taxon set using a new supertree method. We prove that DACTAL is guaranteed to produce the true tree under certain conditions. We compare DACTAL to SATé and maximum likelihood trees on estimated alignments using simulated and real datasets with 1000–27 643 taxa.
Results: Our studies show that on average DACTAL yields more accurate trees than the two-phase methods we studied on very large datasets that are difficult to align, and has approximately the same accuracy on the easier datasets. The comparison to SATé shows that both have the same accuracy, but that DACTAL achieves this accuracy in a fraction of the time. Furthermore, DACTAL can analyze larger datasets than SATé, including a dataset with almost 28 000 sequences.
Availability: DACTAL source code and results of dataset analyses are available at www.cs.utexas.edu/users/phylo/software/dactal.
Contact:
tandy@cs.utexas.edu
doi:10.1093/bioinformatics/bts218
PMCID: PMC3371850
PMID: 22689772
Background
Most statistical methods for phylogenetic estimation in use today treat a gap (generally representing an insertion or deletion, i.e., indel) within the input sequence alignment as missing data. However, the statistical properties of this treatment of indels have not been fully investigated.
Results
We prove that maximum likelihood phylogeny estimation, treating indels as missing data, can be statistically inconsistent for a general (and rather simple) model of sequence evolution, even when given the true alignment. Therefore, accurate phylogeny estimation cannot be guaranteed for maximum likelihood analyses, even given arbitrarily long sequences, when indels are present and treated as missing data.
Conclusions
Our result shows that the standard statistical techniques used to estimate phylogenies from sequence alignments may have unfavorable statistical properties, even when the sequence alignment is accurate and the assumed substitution model matches the generation model. This suggests that the recent research focus on developing statistical methods that treat indel events properly is an important direction for phylogeny estimation.
doi:10.1371/currents.RRN1308
PMCID: PMC3299439
PMID: 22453901
The standard approach to phylogeny estimation uses two phases, in which the first phase produces an alignment on a set of homologous sequences, and the second phase estimates a tree on the multiple sequence alignment. POY, a method which seeks a tree/alignment pair minimizing the total treelength, is the most widely used alternative to this two-phase approach. The topological accuracy of trees computed under treelength optimization is, however, controversial. In particular, one study showed that treelength optimization using simple gap penalties produced poor trees and alignments, and suggested the possibility that if POY were used with an affine gap penalty, it might be able to be competitive with the best two-phase methods. In this paper we report on a study addressing this possibility. We present a new heuristic for treelength, called BeeTLe (Better Treelength), that is guaranteed to produce trees at least as short as POY. We then use this heuristic to analyze a large number of simulated and biological datasets, and compare the resultant trees and alignments to those produced using POY and also maximum likelihood (ML) and maximum parsimony (MP) trees computed on a number of alignments. In general, we find that trees produced by BeeTLe are shorter and more topologically accurate than POY trees, but that neither POY nor BeeTLe produces trees as topologically accurate as ML trees produced on standard alignments. These findings, taken as a whole, suggest that treelength optimization is not as good an approach to phylogenetic tree estimation as maximum likelihood based upon good alignment methods.
doi:10.1371/journal.pone.0033104
PMCID: PMC3307723
PMID: 22442677
Background
Most statistical methods for phylogenetic estimation in use today treat a gap (generally representing an insertion or deletion, i.e., indel) within the input sequence alignment as missing data. However, the statistical properties of this treatment of indels have not been fully investigated.
Results
We prove that maximum likelihood phylogeny estimation, treating indels as missing data, can be statistically inconsistent for a general (and rather simple) model of sequence evolution, even when given the true alignment. Therefore, accurate phylogeny estimation cannot be guaranteed for maximum likelihood analyses, even given arbitrarily long sequences, when indels are present and treated as missing data.
Conclusions
Our result shows that the standard statistical techniques used to estimate phylogenies from sequence alignments may have unfavorable statistical properties, even when the sequence alignment is accurate and the assumed substitution model matches the generation model. This suggests that the recent research focus on developing statistical methods that treat indel events properly is an important direction for phylogeny estimation.
doi:10.1371/currents.RRN1308
PMCID: PMC3299439
PMID: 22453901
Background
Supertree methods combine trees on subsets of the full taxon set together to produce a tree on the entire set of taxa. Of the many supertree methods, the most popular is MRP (Matrix Representation with Parsimony), a method that operates by first encoding the input set of source trees by a large matrix (the "MRP matrix") over {0,1, ?}, and then running maximum parsimony heuristics on the MRP matrix. Experimental studies evaluating MRP in comparison to other supertree methods have established that for large datasets, MRP generally produces trees of equal or greater accuracy than other methods, and can run on larger datasets. A recent development in supertree methods is SuperFine+MRP, a method that combines MRP with a divide-and-conquer approach, and produces more accurate trees in less time than MRP. In this paper we consider a new approach for supertree estimation, called MRL (Matrix Representation with Likelihood). MRL begins with the same MRP matrix, but then analyzes the MRP matrix using heuristics (such as RAxML) for 2-state Maximum Likelihood.
Results
We compared MRP and SuperFine+MRP with MRL and SuperFine+MRL on simulated and biological datasets. We examined the MRP and MRL scores of each method on a wide range of datasets, as well as the resulting topological accuracy of the trees. Our experimental results show that MRL, coupled with a very good ML heuristic such as RAxML, produced more accurate trees than MRP, and MRL scores were more strongly correlated with topological accuracy than MRP scores.
Conclusions
SuperFine+MRP, when based upon a good MP heuristic, such as TNT, produces among the best scores for both MRP and MRL, and is generally faster and more topologically accurate than other supertree methods we tested.
doi:10.1186/1748-7188-7-3
PMCID: PMC3308190
PMID: 22280525
MRP; MRL; supertrees; phylogenetics
Statistical methods for phylogeny estimation, especially maximum likelihood (ML), offer high accuracy with excellent theoretical properties. However, RAxML, the current leading method for large-scale ML estimation, can require weeks or longer when used on datasets with thousands of molecular sequences. Faster methods for ML estimation, among them FastTree, have also been developed, but their relative performance to RAxML is not yet fully understood. In this study, we explore the performance with respect to ML score, running time, and topological accuracy, of FastTree and RAxML on thousands of alignments (based on both simulated and biological nucleotide datasets) with up to 27,634 sequences. We find that when RAxML and FastTree are constrained to the same running time, FastTree produces topologically much more accurate trees in almost all cases. We also find that when RAxML is allowed to run to completion, it provides an advantage over FastTree in terms of the ML score, but does not produce substantially more accurate tree topologies. Interestingly, the relative accuracy of trees computed using FastTree and RAxML depends in part on the accuracy of the sequence alignment and dataset size, so that FastTree can be more accurate than RAxML on large datasets with relatively inaccurate alignments. Finally, the running times of RAxML and FastTree are dramatically different, so that when run to completion, RAxML can take several orders of magnitude longer than FastTree to complete. Thus, our study shows that very large phylogenies can be estimated very quickly using FastTree, with little (and in some cases no) degradation in tree accuracy, as compared to RAxML.
doi:10.1371/journal.pone.0027731
PMCID: PMC3221724
PMID: 22132132
Background
Species phylogenies are not estimated directly, but rather through phylogenetic analyses of different gene datasets. However, true gene trees can differ from the true species tree (and hence from one another) due to biological processes such as horizontal gene transfer, incomplete lineage sorting, and gene duplication and loss, so that no single gene tree is a reliable estimate of the species tree. Several methods have been developed to estimate species trees from estimated gene trees, differing according to the specific algorithmic technique used and the biological model used to explain differences between species and gene trees. Relatively little is known about the relative performance of these methods.
Results
We report on a study evaluating several different methods for estimating species trees from sequence datasets, simulating sequence evolution under a complex model including indels (insertions and deletions), substitutions, and incomplete lineage sorting. The most important finding of our study is that some fast and simple methods are nearly as accurate as the most accurate methods, which employ sophisticated statistical methods and are computationally quite intensive. We also observe that methods that explicitly consider errors in the estimated gene trees produce more accurate trees than methods that assume the estimated gene trees are correct.
Conclusions
Our study shows that highly accurate estimations of species trees are achievable, even when gene trees differ from each other and from the species tree, and that these estimations can be obtained using fairly simple and computationally tractable methods.
doi:10.1186/1471-2105-12-S9-S4
PMCID: PMC3283310
PMID: 22152123
Over the last decade, dramatic advances have been made in developing methods for large-scale phylogeny estimation, so that it is now feasible for investigators with moderate computational resources to obtain reasonable solutions to maximum likelihood and maximum parsimony, even for datasets with a few thousand sequences. There has also been progress on developing methods for multiple sequence alignment, so that greater alignment accuracy (and subsequent improvement in phylogenetic accuracy) is now possible through automated methods. However, these methods have not been tested under conditions that reflect properties of datasets confronted by large-scale phylogenetic estimation projects. In this paper we report on a study that compares several alignment methods on a benchmark collection of nucleotide sequence datasets of up to 78,132 sequences. We show that as the number of sequences increases, the number of alignment methods that can analyze the datasets decreases. Furthermore, the most accurate alignment methods are unable to analyze the very largest datasets we studied, so that only moderately accurate alignment methods can be used on the largest datasets. As a result, alignments computed for large datasets have relatively large error rates, and maximum likelihood phylogenies computed on these alignments also have high error rates. Therefore, the estimation of highly accurate multiple sequence alignments is a major challenge for Tree of Life projects, and more generally for large-scale systematics studies.
doi:10.1371/currents.RRN1198
PMCID: PMC2989897
PMID: 21113338
LEEBENS-MACK, JIM | VISION, TODD | BRENNER, ERIC | BOWERS, JOHN E. | CANNON, STEVEN | CLEMENT, MARK J. | CUNNINGHAM, CLIFFORD W. | dePAMPHILIS, CLAUDE | deSALLE, ROB | DOYLE, JEFF J. | EISEN, JONATHAN A. | GU, XUN | HARSHMAN, JOHN | JANSEN, ROBERT K. | KELLOGG, ELIZABETH A. | KOONIN, EUGENE V. | MISHLER, BRENT D. | PHILIPPE, HERVÉ | PIRES, J. CHRIS | QIU, YIN-LONG | RHEE, SEUNG Y. | SJÖLANDER, KIMMEN | SOLTIS, DOUGLAS E. | SOLTIS, PAMELA S. | STEVENSON, DENNIS W. | WALL, KERR | WARNOW, TANDY | ZMASEK, CHRISTIAN
In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors.
doi:10.1089/omi.2006.10.231
PMCID: PMC3167193
PMID: 16901231
Background
Supertree methods represent one of the major ways by which the Tree of Life can be estimated, but despite many recent algorithmic innovations, matrix representation with parsimony (MRP) remains the main algorithmic supertree method.
Results
We evaluated the performance of several supertree methods based upon the Quartets MaxCut (QMC) method of Snir and Rao and showed that two of these methods usually outperform MRP and five other supertree methods that we studied, under many realistic model conditions. However, the QMC-based methods have scalability issues that may limit their utility on large datasets. We also observed that taxon sampling impacted supertree accuracy, with poor results obtained when all of the source trees were only sparsely sampled. Finally, we showed that the popular optimality criterion of minimizing the total topological distance of the supertree to the source trees is only weakly correlated with supertree topological accuracy. Therefore evaluating supertree methods on biological datasets is problematic.
Conclusions
Our results show that supertree methods that improve upon MRP are possible, and that an effort should be made to produce scalable and robust implementations of the most accurate supertree methods. Also, because topological accuracy depends upon taxon sampling strategies, attempts to construct very large phylogenetic trees using supertree methods should consider the selection of source tree datasets, as well as supertree methods. Finally, since supertree topological error is only weakly correlated with the supertree's topological distance to its source trees, development and testing of supertree methods presents methodological challenges.
doi:10.1186/1748-7188-6-7
PMCID: PMC3101644
PMID: 21504600
Over the last decade, dramatic advances have been made in developing methods for large-scale phylogeny estimation, so that it is now feasible for investigators with moderate computational resources to obtain reasonable solutions to maximum likelihood and maximum parsimony, even for datasets with a few thousand sequences. There has also been progress on developing methods for multiple sequence alignment, so that greater alignment accuracy (and subsequent improvement in phylogenetic accuracy) is now possible through automated methods. However, these methods have not been tested under conditions that reflect properties of datasets confronted by large-scale phylogenetic estimation projects. In this paper we report on a study that compares several alignment methods on a benchmark collection of nucleotide sequence datasets of up to 78,132 sequences. We show that as the number of sequences increases, the number of alignment methods that can analyze the datasets decreases. Furthermore, the most accurate alignment methods are unable to analyze the very largest datasets we studied, so that only moderately accurate alignment methods can be used on the largest datasets. As a result, alignments computed for large datasets have relatively large error rates, and maximum likelihood phylogenies computed on these alignments also have high error rates. Therefore, the estimation of highly accurate multiple sequence alignments is a major challenge for Tree of Life projects, and more generally for large-scale systematics studies.
doi:10.1371/currents.RRN1198
PMCID: PMC2989897
PMID: 21113338
We have assembled a collection of web pages that contain benchmark datasets and software tools to enable the evaluation of the accuracy and scalability of computational methods for estimating evolutionary relationships. They provide a resource to the scientific community for development of new alignment and tree inference methods on very difficult datasets. The datasets are intended to help address three problems: multiple sequence alignment, phylogeny estimation given aligned sequences, and supertree estimation. Datasets from our work include empirical datasets with carefully curated alignments suitable for testing alignment and phylogenetic methods for large-scale systematics studies. Links to other empirical datasets, lacking curated alignments, are also provided. We also include simulated datasets with properties typical of large-scale systematics studies, including high rates of substitutions and indels, and we include the true alignment and tree for each simulated dataset. Finally, we provide links to software tools for generating simulated datasets, and for evaluating the accuracy of alignments and trees estimated on these datasets. We welcome contributions to the benchmark datasets from other researchers.
doi:10.1371/currents.RRN1195
PMCID: PMC2989560
PMID: 21113335
Over the last decade, dramatic advances have been made in developing methods for large-scale phylogeny estimation, so that it is now feasible for investigators with moderate computational resources to obtain reasonable solutions to maximum likelihood and maximum parsimony, even for datasets with a few thousand sequences. There has also been progress on developing methods for multiple sequence alignment, so that greater alignment accuracy (and subsequent improvement in phylogenetic accuracy) is now possible through automated methods. However, these methods have not been tested under conditions that reflect properties of datasets confronted by large-scale phylogenetic estimation projects. In this paper we report on a study that compares several alignment methods on a benchmark collection of nucleotide sequence datasets of up to 78,132 sequences. We show that as the number of sequences increases, the number of alignment methods that can analyze the datasets decreases. Furthermore, the most accurate alignment methods are unable to analyze the very largest datasets we studied, so that only moderately accurate alignment methods can be used on the largest datasets. As a result, alignments computed for large datasets have relatively large error rates, and maximum likelihood phylogenies computed on these alignments also have high error rates. Therefore, the estimation of highly accurate multiple sequence alignments is a major challenge for Tree of Life projects, and more generally for large-scale systematics studies.
doi:10.1371/currents.RRN1198
PMCID: PMC2989897
PMID: 21113338
The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of Class I and II HDACs as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as non-selective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of a first non-selective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
doi:10.1038/nchembio.313
PMCID: PMC2822059
PMID: 20139990
Background
Supertree methods comprise one approach to reconstructing large molecular phylogenies given multi-marker datasets: trees are estimated on each marker and then combined into a tree (the "supertree") on the entire set of taxa. Supertrees can be constructed using various algorithmic techniques, with the most common being matrix representation with parsimony (MRP). When the data allow, the competing approach is a combined analysis (also known as a "supermatrix" or "total evidence" approach) whereby the different sequence data matrices for each of the different subsets of taxa are concatenated into a single supermatrix, and a tree is estimated on that supermatrix.
Results
In this paper, we describe an extensive simulation study we performed comparing two supertree methods, MRP and weighted MRP, to combined analysis methods on large model trees. A key contribution of this study is our novel simulation methodology (Super-Method Input Data Generator, or SMIDGen) that better reflects biological processes and the practices of systematists than earlier simulations. We show that combined analysis based upon maximum likelihood outperforms MRP and weighted MRP, giving especially big improvements when the largest subtree does not contain most of the taxa.
Conclusions
This study demonstrates that MRP and weighted MRP produce distinctly less accurate trees than combined analyses for a given base method (maximum parsimony or maximum likelihood). Since there are situations in which combined analyses are not feasible, there is a clear need for better supertree methods. The source tree and combined datasets used in this study can be used to test other supertree and combined analysis methods.
doi:10.1186/1748-7188-5-8
PMCID: PMC2837663
PMID: 20047664