PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Histone Methyltransferase DOT1L Drives Recovery of Gene Expression after a Genotoxic Attack 
PLoS Genetics  2013;9(7):e1003611.
UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEFDOT1L) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation. However, DOT1L is not implicated in the removal of the UV-induced DNA damage by the nucleotide excision repair pathway. Using FRAP and ChIP experiments we established that DOT1L promotes the formation of the pre-initiation complex on the promoters of UV-repressed genes and the appearance of transcriptionally active chromatin marks. Treatment with Trichostatin A, relaxing chromatin, recovers both transcription initiation and UV-survival. Our data suggest that DOT1L secures an open chromatin structure in order to reactivate RNA Pol II transcription initiation after a genotoxic attack.
Author Summary
Through the deformation of the genomic DNA structure, UV-induced DNA lesions have repressive effect on various nuclear processes including replication and transcription. As a matter of fact, the removal of these lesions is a priority for the cell and takes place at the expense of fundamental cellular processes that are paused to circumvent the risks of mutations that may lead to cancer. The molecular mechanism underlying transcription inhibition and recovery is not clearly understood and appears more complicated than anticipated. Here we analyzed the process of transcription recovery after UV-irradiation and found that it depends on DOT1L, a histone methyltransferase that promotes the reformation of the transcription machinery at the promoters of UV-repressed genes. Our discovery shows that transcription recovery after a genotoxic attack is an active process under the control of chromatin remodelling enzymes.
doi:10.1371/journal.pgen.1003611
PMCID: PMC3701700  PMID: 23861670
2.  In Vivo Destabilization and Functional Defects of the Xeroderma Pigmentosum C Protein Caused by a Pathogenic Missense Mutation▿ ‡  
Molecular and Cellular Biology  2007;27(19):6606-6614.
Xeroderma pigmentosum group C (XPC) protein plays an essential role in DNA damage recognition in mammalian global genome nucleotide excision repair (NER). Here, we analyze the functional basis of NER inactivation caused by a single amino acid substitution (Trp to Ser at position 690) in XPC, previously identified in the XPC patient XP13PV. The Trp690Ser change dramatically affects the in vivo stability of the XPC protein, thereby causing a significant reduction of its steady-state level in XP13PV fibroblasts. Despite normal heterotrimeric complex formation and physical interactions with other NER factors, the mutant XPC protein lacks binding affinity for both undamaged and damaged DNA. Thus, this single amino acid substitution is sufficient to compromise XPC function through both quantitative and qualitative alterations of the protein. Although the mutant XPC fails to recognize damaged DNA, it is still capable of accumulating in a UV-damaged DNA-binding protein (UV-DDB)-dependent manner to UV-damaged subnuclear domains. However, the NER factors transcription factor IIH and XPA failed to colocalize stably with the mutant XPC. As well as highlighting the importance of UV-DDB in recruiting XPC to UV-damaged sites, these findings demonstrate the role of DNA binding by XPC in the assembly of subsequent NER intermediate complexes.
doi:10.1128/MCB.02166-06
PMCID: PMC2099227  PMID: 17682058
3.  Rac3-induced Neuritogenesis Requires Binding to Neurabin I 
Molecular Biology of the Cell  2006;17(5):2391-2400.
Rac3, a neuronal GTP-binding protein of the Rho family, induces neuritogenesis in primary neurons. Using yeast two-hybrid analysis, we show that Neurabin I, the neuronal F-actin binding protein, is a direct Rac3-interacting molecule. Biochemical and light microscopy studies indicate that Neurabin I copartitions and colocalizes with Rac3 at the growth cones of neurites, inducing Neurabin I association to the cytoskeleton. Moreover, Neurabin I antisense oligonucleotides abolish Rac3-induced neuritogenesis, which in turn is rescued by exogenous Neurabin I but not by Neurabin I mutant lacking the Rac3-binding domain. These results show that Neurabin I mediates Rac3-induced neuritogenesis, possibly by anchoring Rac3 to growth cone F-actin.
doi:10.1091/mbc.E05-08-0753
PMCID: PMC1446074  PMID: 16525025
4.  Transcription-Associated Breaks in Xeroderma Pigmentosum Group D Cells from Patients with Combined Features of Xeroderma Pigmentosum and Cockayne Syndrome 
Molecular and Cellular Biology  2005;25(18):8368-8378.
Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In the present work, we show that three further XP-D/CS patients show the same peculiar breakage phenomenon. We show that these breaks can be visualized inside the cells by immunofluorescence using antibodies to either γ-H2AX or poly-ADP-ribose and that they can be generated by the introduction of plasmids harboring methylation or oxidative damage as well as by UV photoproducts. Inhibition of RNA polymerase II transcription by four different inhibitors dramatically reduced the number of UV-induced breaks. Furthermore, the breaks were dependent on the nucleotide excision repair (NER) machinery. These data are consistent with our hypothesis that the NER machinery introduces the breaks at sites of transcription initiation. During transcription in UV-irradiated XP-D/CS cells, phosphorylation of the carboxy-terminal domain of RNA polymerase II occurred normally, but the elongating form of the polymerase remained blocked at lesions and was eventually degraded.
doi:10.1128/MCB.25.18.8368-8378.2005
PMCID: PMC1234319  PMID: 16135823
5.  Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant 
Nucleic Acids Research  2001;29(9):1884-1891.
The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types.
PMCID: PMC37259  PMID: 11328871
6.  Different dynamics in nuclear entry of subunits of the repair/transcription factor TFIIH 
Nucleic Acids Research  2001;29(7):1574-1581.
We report here the different ways in which four subunits of the basal transcription/repair factor TFIIH (XPB, XPD, p62 and p44) and the damage recognition XPC repair protein can enter the nucleus. We examined their nuclear localization by transiently expressing the gene products tagged with the enhanced green fluorescent protein (EGFP) in transfected 3T3 cells. In agreement with the identification of more than one putative nuclear localization signal (NLS) in their protein sequences, XPB, XPC, p62 and p44 chimeras were rapidly sorted to the nucleus. In contrast, the XPD–EGFP chimeras appeared mainly localized in the cytoplasm, with a minor fraction of transfectants showing the EGFP-based fluorescence also in the nucleus. The ability of the XPD chimeras to enter the nucleus was confirmed by western blotting on fractionated cell extracts and by functional complementation of the repair defect in the UV5 rodent cells, mutated in the XPD homologous gene. By deletion mutagenesis, we were unable to identify any sequence specific for nuclear localization. In particular, deletion of the putative NLS failed to affect subcellular localization and, conversely, the C-terminal part of XPD containing the putative NLS showed no specific nuclear accumulation. These findings suggest that the nuclear entry of XPD depends on its complexation with other proteins in the cytoplasm, possibly other components of the TFIIH complex.
PMCID: PMC31283  PMID: 11266560
7.  Relationship of the Xeroderma Pigmentosum Group E DNA Repair Defect to the Chromatin and DNA Binding Proteins UV-DDB and Replication Protein A 
Molecular and Cellular Biology  1998;18(6):3182-3190.
Cells from complementation groups A through G of the heritable sun-sensitive disorder xeroderma pigmentosum (XP) show defects in nucleotide excision repair of damaged DNA. Proteins representing groups A, B, C, D, F, and G are subunits of the core recognition and incision machinery of repair. XP group E (XP-E) is the mildest form of the disorder, and cells generally show about 50% of the normal repair level. We investigated two protein factors previously implicated in the XP-E defect, UV-damaged DNA binding protein (UV-DDB) and replication protein A (RPA). Three newly identified XP-E cell lines (XP23PV, XP25PV, and a line formerly classified as an XP variant) were defective in UV-DDB binding activity but had levels of RPA in the normal range. The XP-E cell extracts did not display a significant nucleotide excision repair defect in vitro, with either UV-irradiated DNA or a uniquely placed cisplatin lesion used as a substrate. Purified UV-DDB protein did not stimulate repair of naked DNA by DDB− XP-E cell extracts, but microinjection of the protein into DDB− XP-E cells could partially correct the repair defect. RPA stimulated repair in normal, XP-E, or complemented extracts from other XP groups, and so the effect of RPA was not specific for XP-E cell extracts. These data strengthen the connection between XP-E and UV-DDB. Coupled with previous results, the findings suggest that UV-DDB has a role in the repair of DNA in chromatin.
PMCID: PMC108900  PMID: 9584159

Results 1-7 (7)