PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (30)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  The Vast, Conserved Mammalian lincRNome 
PLoS Computational Biology  2013;9(2):e1002917.
We compare the sets of experimentally validated long intergenic non-coding (linc)RNAs from human and mouse and apply a maximum likelihood approach to estimate the total number of lincRNA genes as well as the size of the conserved part of the lincRNome. Under the assumption that the sets of experimentally validated lincRNAs are random samples of the lincRNomes of the corresponding species, we estimate the total lincRNome size at approximately 40,000 to 50,000 species, at least twice the number of protein-coding genes. We further estimate that the fraction of the human and mouse euchromatic genomes encoding lincRNAs is more than twofold greater than the fraction of protein-coding sequences. Although the sequences of most lincRNAs are much less strongly conserved than protein sequences, the extent of orthology between the lincRNomes is unexpectedly high, with 60 to 70% of the lincRNA genes shared between human and mouse. The orthologous mammalian lincRNAs can be predicted to perform equivalent functions; accordingly, it appears likely that thousands of evolutionarily conserved functional roles of lincRNAs remain to be characterized.
Author Summary
Genome analysis of humans and other mammals reveals a surprisingly small number of protein-coding genes, only slightly over 20,000 (although the diversity of actual proteins is substantially augmented by alternative transcription and alternative splicing). Recent analysis of the mammalian genomes and transcriptomes, in particular, using the RNAseq technology, shows that, in addition to protein-coding genes, mammalian genomes encode many long non-coding RNAs. For some of these transcripts, various regulatory functions have been demonstrated, but on the whole the repertoire of long non-coding RNAs remains poorly characterized. We compared the identified long intergenic non-coding (linc)RNAs from human and mouse, and employed a specially developed statistical technique to estimate the size and evolutionary conservation of the human and mouse lincRNomes. The estimates show that there are at least twice as many human and mouse lincRNAs than there are protein-coding genes. Moreover, about two third of the lincRNA genes appear to be conserved between human and mouse, implying thousands of conserved but still uncharacterized functions.
doi:10.1371/journal.pcbi.1002917
PMCID: PMC3585383  PMID: 23468607
2.  Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity 
Nucleic Acids Research  2013;41(4):2073-2094.
Messenger RNA is a key component of an intricate regulatory network of its own. It accommodates numerous nucleotide signals that overlap protein coding sequences and are responsible for multiple levels of regulation and generation of biological complexity. A wealth of structural and regulatory information, which mRNA carries in addition to the encoded amino acid sequence, raises the question of how these signals and overlapping codes are delineated along non-synonymous and synonymous positions in protein coding regions, especially in eukaryotes. Silent or synonymous codon positions, which do not determine amino acid sequences of the encoded proteins, define mRNA secondary structure and stability and affect the rate of translation, folding and post-translational modifications of nascent polypeptides. The RNA level selection is acting on synonymous sites in both prokaryotes and eukaryotes and is more common than previously thought. Selection pressure on the coding gene regions follows three-nucleotide periodic pattern of nucleotide base-pairing in mRNA, which is imposed by the genetic code. Synonymous positions of the coding regions have a higher level of hybridization potential relative to non-synonymous positions, and are multifunctional in their regulatory and structural roles. Recent experimental evidence and analysis of mRNA structure and interspecies conservation suggest that there is an evolutionary tradeoff between selective pressure acting at the RNA and protein levels. Here we provide a comprehensive overview of the studies that define the role of silent positions in regulating RNA structure and processing that exert downstream effects on proteins and their functions.
doi:10.1093/nar/gks1205
PMCID: PMC3575835  PMID: 23293005
3.  Related Giant Viruses in Distant Locations and Different Habitats: Acanthamoeba polyphaga moumouvirus Represents a Third Lineage of the Mimiviridae That Is Close to the Megavirus Lineage 
Genome Biology and Evolution  2012;4(12):1324-1330.
The 1,021,348 base pair genome sequence of the Acanthamoeba polyphaga moumouvirus, a new member of the Mimiviridae family infecting Acanthamoeba polyphaga, is reported. The moumouvirus represents a third lineage beside mimivirus and megavirus. Thereby, it is a new member of the recently proposed Megavirales order. This giant virus was isolated from a cooling tower water in southeastern France but is most closely related to Megavirus chiliensis, which was isolated from ocean water off the coast of Chile. The moumouvirus is predicted to encode 930 proteins, of which 879 have detectable homologs. Among these predicted proteins, for 702 the closest homolog was detected in Megavirus chiliensis, with the median amino acid sequence identity of 62%. The evolutionary affinity of moumouvirus and megavirus was further supported by phylogenetic tree analysis of conserved genes. The moumouvirus and megavirus genomes share near perfect orthologous gene collinearity in the central part of the genome, with the variations concentrated in the terminal regions. In addition, genomic comparisons of the Mimiviridae reveal substantial gene loss in the moumouvirus lineage. The majority of the remaining moumouvirus proteins are most similar to homologs from other Mimiviridae members, and for 27 genes the closest homolog was found in bacteria. Phylogenetic analysis of these genes supported gene acquisition from diverse bacteria after the separation of the moumouvirus and megavirus lineages. Comparative genome analysis of the three lineages of the Mimiviridae revealed significant mobility of Group I self-splicing introns, with the highest intron content observed in the moumouvirus genome.
doi:10.1093/gbe/evs109
PMCID: PMC3542560  PMID: 23221609
moumouvirus; mimivirus; giant virus; megavirus; Mimiviridae; Megavirales; horizontal gene transfer; viral genome; nucleo-cytoplasmic large DNA viruses
4.  Optimized models for design of efficient miR30-based shRNAs 
Frontiers in Genetics  2012;3:163.
Small hairpin RNAs (shRNAs) became an important research tool in cell biology. Reliable design of these molecules is essential for the needs of large functional genomics projects. To optimize the design of efficient shRNAs, we performed comparative, thermodynamic, and correlation analyses of ~18,000 miR30-based shRNAs with known functional efficiencies, derived from the Sensor Assay project (Fellmann et al., 2011). We identified features of the shRNA guide strand that significantly correlate with the silencing efficiency and performed multiple regression analysis, using 4/5 of the data for training purposes and 1/5 for cross validation. A model that included the position-dependent nucleotide preferences was predictive in the cross-validation data subset (R = 0.39). However, a model, which in addition to the nucleotide preferences included thermodynamic shRNA features such as a thermodynamic duplex stability and position-dependent thermodynamic profile (dinucleotide free energy) was performing better (R = 0.53). Software “miR_Scan” was developed based upon the optimized models. Calculated mRNA target secondary structure stability showed correlation with shRNA silencing efficiency but failed to improve the model. Correlation analysis demonstrates that our algorithm for identification of efficient miR30-based shRNA molecules performs better than approaches that were developed for design of chemically synthesized siRNAs (Rmax = 0.36).
doi:10.3389/fgene.2012.00163
PMCID: PMC3429853  PMID: 22952469
shRNA design; computational models; thermodynamic parameters; miR30-based shRNA
5.  Negative Correlation between Expression Level and Evolutionary Rate of Long Intergenic Noncoding RNAs 
Genome Biology and Evolution  2011;3:1390-1404.
Mammalian genomes contain numerous genes for long noncoding RNAs (lncRNAs). The functions of the lncRNAs remain largely unknown but their evolution appears to be constrained by purifying selection, albeit relatively weakly. To gain insights into the mode of evolution and the functional range of the lncRNA, they can be compared with much better characterized protein-coding genes. The evolutionary rate of the protein-coding genes shows a universal negative correlation with expression: highly expressed genes are on average more conserved during evolution than the genes with lower expression levels. This correlation was conceptualized in the misfolding-driven protein evolution hypothesis according to which misfolding is the principal cost incurred by protein expression. We sought to determine whether long intergenic ncRNAs (lincRNAs) follow the same evolutionary trend and indeed detected a moderate but statistically significant negative correlation between the evolutionary rate and expression level of human and mouse lincRNA genes. The magnitude of the correlation for the lincRNAs is similar to that for equal-sized sets of protein-coding genes with similar levels of sequence conservation. Additionally, the expression level of the lincRNAs is significantly and positively correlated with the predicted extent of lincRNA molecule folding (base-pairing), however, the contributions of evolutionary rates and folding to the expression level are independent. Thus, the anticorrelation between evolutionary rate and expression level appears to be a general feature of gene evolution that might be caused by similar deleterious effects of protein and RNA misfolding and/or other factors, for example, the number of interacting partners of the gene product.
doi:10.1093/gbe/evr116
PMCID: PMC3242500  PMID: 22071789
long noncoding RNA; ncRNA; RNA expression; genomic alignments; introns; RNA folding
6.  Differential Arginylation of Actin Isoforms is Regulated by Coding-Sequence-Dependent Degradation* 
Science (New York, N.Y.)  2010;329(5998):1534-1537.
The mammalian cytoskeletal proteins β- and γ-actin are highly homologous, but only β-actin is N-terminally arginylated, which regulates its function. Here we examined the metabolic fate of exogenously expressed arginylated and non-arginylated actin isoforms. Arginylated γ-actin, unlike β-, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the coding sequence between the two actin isoforms, which conferred different translation rates. γ-actin was translated more slowly than β-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of γ-actin upon arginylation. This degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo.
doi:10.1126/science.1191701
PMCID: PMC2941909  PMID: 20847274
7.  Viruses with More Than 1,000 Genes: Mamavirus, a New Acanthamoeba polyphaga mimivirus Strain, and Reannotation of Mimivirus Genes 
The genome sequence of the Mamavirus, a new Acanthamoeba polyphaga mimivirus strain, is reported. With 1,191,693 nt in length and 1,023 predicted protein-coding genes, the Mamavirus has the largest genome among the known viruses. The genomes of the Mamavirus and the previously described Mimivirus are highly similar in both the protein-coding genes and the intergenic regions. However, the Mamavirus contains an extra 5′-terminal segment that encompasses primarily disrupted duplicates of genes present elsewhere in the genome. The Mamavirus also has several unique genes including a small regulatory polyA polymerase subunit that is shared with poxviruses. Detailed analysis of the protein sequences of the two Mimiviruses led to a substantial amendment of the functional annotation of the viral genomes.
doi:10.1093/gbe/evr048
PMCID: PMC3163472  PMID: 21705471
Mimivirus; viral genome; nucleocytoplasmic large DNA viruses
8.  Disruptive mRNA folding increases translational efficiency of catechol-O-methyltransferase variant 
Nucleic Acids Research  2011;39(14):6201-6212.
Catechol-O-methyltransferase (COMT) is a major enzyme controlling catecholamine levels that plays a central role in cognition, affective mood and pain perception. There are three common COMT haplotypes in the human population reported to have functional effects, divergent in two synonymous and one nonsynonymous position. We demonstrate that one of the haplotypes, carrying the non-synonymous variation known to code for a less stable protein, exhibits increased protein expression in vitro. This increased protein expression, which would compensate for lower protein stability, is solely produced by a synonymous variation (C166T) situated within the haplotype and located in the 5′ region of the RNA transcript. Based on mRNA secondary structure predictions, we suggest that structural destabilization near the start codon caused by the T allele could be related to the observed increase in COMT expression. Our folding simulations of the tertiary mRNA structures demonstrate that destabilization by the T allele lowers the folding transition barrier, thus decreasing the probability of occupying its native state. These data suggest a novel structural mechanism whereby functional synonymous variations near the translation initiation codon affect the translation efficiency via entropy-driven changes in mRNA dynamics and present another example of stable compensatory genetic variations in the human population.
doi:10.1093/nar/gkr165
PMCID: PMC3152328  PMID: 21486747
9.  Connections between Alternative Transcription and Alternative Splicing in Mammals 
The majority of mammalian genes produce multiple transcripts resulting from alternative splicing (AS) and/or alternative transcription initiation (ATI) and alternative transcription termination (ATT). Comparative analysis of the number of alternative nucleotides, isoforms, and introns per locus in genes with different types of alternative events suggests that ATI and ATT contribute to the diversity of human and mouse transcriptome even more than AS. There is a strong negative correlation between AS and ATI in 5′ untranslated regions (UTRs) and AS in coding sequences (CDSs) but an even stronger positive correlation between AS in CDSs and ATT in 3′ UTRs. These observations could reflect preferential regulation of distinct, large groups of genes by different mechanisms: 1) regulation at the level of transcription initiation and initiation of translation resulting from ATI and AS in 5′ UTRs and 2) posttranslational regulation by different protein isoforms. The tight linkage between AS in CDSs and ATT in 3′ UTRs suggests that variability of 3′ UTRs mediates differential translational regulation of alternative protein forms. Together, the results imply coordinate evolution of AS and alternative transcription, processes that occur concomitantly within gene expression factories.
doi:10.1093/gbe/evq058
PMCID: PMC2975443  PMID: 20889654
alternative splicing; alternative transcription initiation; alternative transcription termination; gene expression factories
10.  Optimization of Duplex Stability and Terminal Asymmetry for shRNA Design 
PLoS ONE  2010;5(4):e10180.
Prediction of efficient oligonucleotides for RNA interference presents a serious challenge, especially for the development of genome-wide RNAi libraries which encounter difficulties and limitations due to ambiguities in the results and the requirement for significant computational resources. Here we present a fast and practical algorithm for shRNA design based on the thermodynamic parameters. In order to identify shRNA and siRNA features universally associated with high silencing efficiency, we analyzed structure-activity relationships in thousands of individual RNAi experiments from publicly available databases (ftp://ftp.ncbi.nlm.nih.gov/pub/shabalin/siRNA/si_shRNA_selector/). Using this statistical analysis, we found free energy ranges for the terminal duplex asymmetry and for fully paired duplex stability, such that shRNAs or siRNAs falling in both ranges have a high probability of being efficient. When combined, these two parameters yield a ∼72% success rate on shRNAs from the siRecords database, with the target RNA levels reduced to below 20% of the control. Two other parameters correlate well with silencing efficiency: the stability of target RNA and the antisense strand secondary structure. Both parameters also correlate with the short RNA duplex stability; as a consequence, adding these parameters to our prediction scheme did not substantially improve classification accuracy. To test the validity of our predictions, we designed 83 shRNAs with optimal terminal asymmetry, and experimentally verified that small shifts in duplex stability strongly affected silencing efficiency. We showed that shRNAs with short fully paired stems could be successfully selected by optimizing only two parameters: terminal duplex asymmetry and duplex stability of the hypothetical cleavage product, which also relates to the specificity of mRNA target recognition. Our approach performs at the level of the best currently utilized algorithms that take into account prediction of the secondary structure of the target and antisense RNAs, but at significantly lower computational costs. Based on this study, we created the si-shRNA Selector program that predicts both highly efficient shRNAs and functional siRNAs (ftp://ftp.ncbi.nlm.nih.gov/pub/shabalin/siRNA/si_shRNA_selector/).
doi:10.1371/journal.pone.0010180
PMCID: PMC2857877  PMID: 20422034
11.  Distinct Patterns of Expression and Evolution of Intronless and Intron-Containing Mammalian Genes 
Molecular Biology and Evolution  2010;27(8):1745-1749.
Comparison of expression levels and breadth and evolutionary rates of intronless and intron-containing mammalian genes shows that intronless genes are expressed at lower levels, tend to be tissue specific, and evolve significantly faster than spliced genes. By contrast, monomorphic spliced genes that are not subject to detectable alternative splicing and polymorphic alternatively spliced genes show similar statistically indistinguishable patterns of expression and evolution. Alternative splicing is most common in ancient genes, whereas intronless genes appear to have relatively recent origins. These results imply tight coupling between different stages of gene expression, in particular, transcription, splicing, and nucleocytosolic transport of transcripts, and suggest that formation of intronless genes is an important route of evolution of novel tissue-specific functions in animals.
doi:10.1093/molbev/msq086
PMCID: PMC2908711  PMID: 20360214
alternative splicing; intronless genes; monomorphic genes; polymorphic genes; mammalian gene evolution
12.  Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families 
Nucleic Acids Research  2010;38(11):3743-3759.
Small, hydrophobic proteins whose synthesis is repressed by small RNAs (sRNAs), denoted type I toxin–antitoxin modules, were first discovered on plasmids where they regulate plasmid stability, but were subsequently found on a few bacterial chromosomes. We used exhaustive PSI-BLAST and TBLASTN searches across 774 bacterial genomes to identify homologs of known type I toxins. These searches substantially expanded the collection of predicted type I toxins, revealed homology of the Ldr and Fst toxins, and suggested that type I toxin–antitoxin loci are not spread by horizontal gene transfer. To discover novel type I toxin–antitoxin systems, we developed a set of search parameters based on characteristics of known loci including the presence of tandem repeats and clusters of charged and bulky amino acids at the C-termini of short proteins containing predicted transmembrane regions. We detected sRNAs for three predicted toxins from enterohemorrhagic Escherichia coli and Bacillus subtilis, and showed that two of the respective proteins indeed are toxic when overexpressed. We also demonstrated that the local free-energy minima of RNA folding can be used to detect the positions of the sRNA genes. Our results suggest that type I toxin–antitoxin modules are much more widely distributed among bacteria than previously appreciated.
doi:10.1093/nar/gkq054
PMCID: PMC2887945  PMID: 20156992
13.  Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements 
Burkholderia mallei (Bm), the causative agent of the predominately equine disease glanders, is a genetically uniform species that is very closely related to the much more diverse species Burkholderia pseudomallei (Bp), an opportunistic human pathogen and the primary cause of melioidosis. To gain insight into the relative lack of genetic diversity within Bm, we performed whole-genome comparative analysis of seven Bm strains and contrasted these with eight Bp strains. The Bm core genome (shared by all seven strains) is smaller in size than that of Bp, but the inverse is true for the variable gene sets that are distributed across strains. Interestingly, the biological roles of the Bm variable gene sets are much more homogeneous than those of Bp. The Bm variable genes are found mostly in contiguous regions flanked by insertion sequence (IS) elements, which appear to mediate excision and subsequent elimination of groups of genes that are under reduced selection in the mammalian host. The analysis suggests that the Bm genome continues to evolve through random IS-mediated recombination events, and differences in gene content may contribute to differences in virulence observed among Bm strains. The results are consistent with the view that Bm recently evolved from a single strain of Bp upon introduction into an animal host followed by expansion of IS elements, prophage elimination, and genome rearrangements and reduction mediated by homologous recombination across IS elements.
doi:10.1093/gbe/evq003
PMCID: PMC2839346  PMID: 20333227
bacterial evolution; comparative genomics; genome erosion; bacterial virulence
14.  Origins and evolution of eukaryotic RNA interference 
Trends in ecology & evolution  2008;23(10):578-587.
Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have a RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral proteins of archaeal, bacterial and phage origins that are involved in DNA repair and RNA-processing pathways.
doi:10.1016/j.tree.2008.06.005
PMCID: PMC2695246  PMID: 18715673
15.  Evolution of alternative and constitutive regions of mammalian 5'UTRs 
BMC Genomics  2009;10:162.
Background
Alternative splicing (AS) in protein-coding sequences has emerged as an important mechanism of regulation and diversification of animal gene function. By contrast, the extent and roles of alternative events including AS and alternative transcription initiation (ATI) within the 5'-untranslated regions (5'UTRs) of mammalian genes are not well characterized.
Results
We evaluated the abundance, conservation and evolution of putative regulatory control elements, namely, upstream start codons (uAUGs) and open reading frames (uORFs), in the 5'UTRs of human and mouse genes impacted by alternative events. For genes with alternative 5'UTRs, the fraction of alternative sequences (those present in a subset of the transcripts) is much greater than that in the corresponding coding sequence, conceivably, because 5'UTRs are not bound by constraints on protein structure that limit AS in coding regions. Alternative regions of mammalian 5'UTRs evolve faster and are subject to a weaker purifying selection than constitutive portions. This relatively weak selection results in over-abundance of uAUGs and uORFs in the alternative regions of 5'UTRs compared to constitutive regions. Nevertheless, even in alternative regions, uORFs evolve under a stronger selection than the rest of the sequences, indicating that some of the uORFs are conserved regulatory elements; some of the non-conserved uORFs could be involved in species-specific regulation.
Conclusion
The findings on the evolution and selection in alternative and constitutive regions presented here are consistent with the hypothesis that alternative events, namely, AS and ATI, in 5'UTRs of mammalian genes are likely to contribute to the regulation of translation.
doi:10.1186/1471-2164-10-162
PMCID: PMC2674463  PMID: 19371439
16.  Low Enzymatic Activity Haplotypes of the Human Catechol-O-Methyltransferase Gene: Enrichment for Marker SNPs 
PLoS ONE  2009;4(4):e5237.
Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous (val158met) position, designated as low (LPS), average (APS), and high pain sensitive (HPS), are associated with experimental pain sensitivity and risk of developing chronic musculoskeletal pain conditions. APS and HPS haplotypes produce significant functional effects, coding for 3- and 20-fold reductions in COMT enzymatic activity, respectively. In the present study, we investigated whether additional minor single nucleotide polymorphisms (SNPs), accruing in 1 to 5% of the population, situated in the COMT transcript region contribute to haplotype-dependent enzymatic activity. Computer analysis of COMT ESTs showed that one synonymous minor SNP (rs769224) is linked to the APS haplotype and three minor SNPs (two synonymous: rs6267, rs740602 and one nonsynonymous: rs8192488) are linked to the HPS haplotype. Results from in silico and in vitro experiments revealed that inclusion of allelic variants of these minor SNPs in APS or HPS haplotypes did not modify COMT function at the level of mRNA folding, RNA transcription, protein translation, or enzymatic activity. These data suggest that neutral variants are carried with APS and HPS haplotypes, while the high activity LPS haplotype displays less linked variation. Thus, both minor synonymous and nonsynonymous SNPs in the coding region are markers of functional APS and HPS haplotypes rather than independent contributors to COMT activity.
doi:10.1371/journal.pone.0005237
PMCID: PMC2664927  PMID: 19365560
17.  Widespread Positive Selection in Synonymous Sites of Mammalian Genes 
Molecular biology and evolution  2007;24(8):1821-1831.
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in ∼28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in ∼12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.
doi:10.1093/molbev/msm100
PMCID: PMC2632937  PMID: 17522087
synonymous sites; nonsynonymous sites; positive selection; purifying selection; introns
18.  Expansion of the human μ-opioid receptor gene architecture: novel functional variants 
Human Molecular Genetics  2008;18(6):1037-1051.
The μ-opioid receptor (OPRM1) is the principal receptor target for both endogenous and exogenous opioid analgesics. There are substantial individual differences in human responses to painful stimuli and to opiate drugs that are attributed to genetic variations in OPRM1. In searching for new functional variants, we employed comparative genome analysis and obtained evidence for the existence of an expanded human OPRM1 gene locus with new promoters, alternative exons and regulatory elements. Examination of polymorphisms within the human OPRM1 gene locus identified strong association between single nucleotide polymorphism (SNP) rs563649 and individual variations in pain perception. SNP rs563649 is located within a structurally conserved internal ribosome entry site (IRES) in the 5′-UTR of a novel exon 13-containing OPRM1 isoforms (MOR-1K) and affects both mRNA levels and translation efficiency of these variants. Furthermore, rs563649 exhibits very strong linkage disequilibrium throughout the entire OPRM1 gene locus and thus affects the functional contribution of the corresponding haplotype that includes other functional OPRM1 SNPs. Our results provide evidence for an essential role for MOR-1K isoforms in nociceptive signaling and suggest that genetic variations in alternative OPRM1 isoforms may contribute to individual differences in opiate responses.
doi:10.1093/hmg/ddn439
PMCID: PMC2649019  PMID: 19103668
19.  Expression Patterns of Protein Kinases Correlate with Gene Architecture and Evolutionary Rates 
PLoS ONE  2008;3(10):e3599.
Background
Protein kinase (PK) genes comprise the third largest superfamily that occupy ∼2% of the human genome. They encode regulatory enzymes that control a vast variety of cellular processes through phosphorylation of their protein substrates. Expression of PK genes is subject to complex transcriptional regulation which is not fully understood.
Principal Findings
Our comparative analysis demonstrates that genomic organization of regulatory PK genes differs from organization of other protein coding genes. PK genes occupy larger genomic loci, have longer introns, spacer regions, and encode larger proteins. The primary transcript length of PK genes, similar to other protein coding genes, inversely correlates with gene expression level and expression breadth, which is likely due to the necessity to reduce metabolic costs of transcription for abundant messages. On average, PK genes evolve slower than other protein coding genes. Breadth of PK expression negatively correlates with rate of non-synonymous substitutions in protein coding regions. This rate is lower for high expression and ubiquitous PKs, relative to low expression PKs, and correlates with divergence in untranslated regions. Conversely, rate of silent mutations is uniform in different PK groups, indicating that differing rates of non-synonymous substitutions reflect variations in selective pressure. Brain and testis employ a considerable number of tissue-specific PKs, indicating high complexity of phosphorylation-dependent regulatory network in these organs. There are considerable differences in genomic organization between PKs up-regulated in the testis and brain. PK genes up-regulated in the highly proliferative testicular tissue are fast evolving and small, with short introns and transcribed regions. In contrast, genes up-regulated in the minimally proliferative nervous tissue carry long introns, extended transcribed regions, and evolve slowly.
Conclusions/Significance
PK genomic architecture, the size of gene functional domains and evolutionary rates correlate with the pattern of gene expression. Structure and evolutionary divergence of tissue-specific PK genes is related to the proliferative activity of the tissue where these genes are predominantly expressed. Our data provide evidence that physiological requirements for transcription intensity, ubiquitous expression, and tissue-specific regulation shape gene structure and affect rates of evolution.
doi:10.1371/journal.pone.0003599
PMCID: PMC2572838  PMID: 18974838
20.  Three major haplotypes of the β2 adrenergic receptor define psychological profile, blood pressure, and the risk for development of a common musculoskeletal pain disorder 
Adrenergic receptor β2 (ADRB2) is a primary target for epinephrine. It plays a critical role in mediating physiological and psychological responses to environmental stressors. Thus, functional genetic variants of ADRB2 will be associated with a complex array of psychological and physiological phenotypes. These genetic variants should also interact with environmental factors such as physical or emotional stress to produce a phenotype vulnerable to pathological states. In this study, we determined whether common genetic variants of ADRB2 contribute to the development of a common chronic pain condition that is associated with increased levels of psychological distress and low blood pressure, factors which are strongly influenced by the adrenergic system. We genotyped 202 female subjects and examined the relationships between three major ADRB2 haplotypes and psychological factors, resting blood pressure, and the risk of developing a chronic musculoskeletal pain condition - Temporomandibular Joint Disorder (TMD). We propose that the first haplotype codes for lower levels of ADRB2 expression, the second haplotype codes for higher ADRB2 expression, and the third haplotype codes for higher receptor expression and rapid agonist-induced internalization. Individuals who carried one haplotype coding for high and one coding for low ADRB2 expression displayed the highest positive psychological traits, had higher levels of resting arterial pressure, and were about 10 times less likely to develop TMD. Thus, our data suggest that either positive or negative imbalances in ADRB2 function increase the vulnerability to chronic pain conditions such as TMD through different etiological pathways that imply the need for tailored treatment options.
doi:10.1002/ajmg.b.30324
PMCID: PMC2570772  PMID: 16741943
adrenergic receptor β2; haplotype; SNPs; chronic pain; blood pressure; somatization; depression; anxiety; negative moods
21.  Comparison of approaches for rational siRNA design leading to a new efficient and transparent method 
Nucleic Acids Research  2007;35(8):e63.
Current literature describes several methods for the design of efficient siRNAs with 19 perfectly matched base pairs and 2 nt overhangs. Using four independent databases totaling 3336 experimentally verified siRNAs, we compared how well several of these methods predict siRNA cleavage efficiency. According to receiver operating characteristics (ROC) and correlation analyses, the best programs were BioPredsi, ThermoComposition and DSIR. We also studied individual parameters that significantly and consistently correlated with siRNA efficacy in different databases. As a result of this work we developed a new method which utilizes linear regression fitting with local duplex stability, nucleotide position-dependent preferences and total G/C content of siRNA duplexes as input parameters. The new method's discrimination ability of efficient and inefficient siRNAs is comparable with that of the best methods identified, but its parameters are more obviously related to the mechanisms of siRNA action in comparison with BioPredsi. This permits insight to the underlying physical features and relative importance of the parameters. The new method of predicting siRNA efficiency is faster than that of ThermoComposition because it does not employ time-consuming RNA secondary structure calculations and has much less parameters than DSIR. It is available as a web tool called ‘siRNA scales’.
doi:10.1093/nar/gkm088
PMCID: PMC1885645  PMID: 17426130
22.  A periodic pattern of mRNA secondary structure created by the genetic code 
Nucleic Acids Research  2006;34(8):2428-2437.
Single-stranded mRNA molecules form secondary structures through complementary self-interactions. Several hypotheses have been proposed on the relationship between the nucleotide sequence, encoded amino acid sequence and mRNA secondary structure. We performed the first transcriptome-wide in silico analysis of the human and mouse mRNA foldings and found a pronounced periodic pattern of nucleotide involvement in mRNA secondary structure. We show that this pattern is created by the structure of the genetic code, and the dinucleotide relative abundances are important for the maintenance of mRNA secondary structure. Although synonymous codon usage contributes to this pattern, it is intrinsic to the structure of the genetic code and manifests itself even in the absence of synonymous codon usage bias at the 4-fold degenerate sites. While all codon sites are important for the maintenance of mRNA secondary structure, degeneracy of the code allows regulation of stability and periodicity of mRNA secondary structure. We demonstrate that the third degenerate codon sites contribute most strongly to mRNA stability. These results convincingly support the hypothesis that redundancies in the genetic code allow transcripts to satisfy requirements for both protein structure and RNA structure. Our data show that selection may be operating on synonymous codons to maintain a more stable and ordered mRNA secondary structure, which is likely to be important for transcript stability and translation. We also demonstrate that functional domains of the mRNA [5′-untranslated region (5′-UTR), CDS and 3′-UTR] preferentially fold onto themselves, while the start codon and stop codon regions are characterized by relaxed secondary structures, which may facilitate initiation and termination of translation.
doi:10.1093/nar/gkl287
PMCID: PMC1458515  PMID: 16682450
23.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action 
Biology Direct  2006;1:7.
Background
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis.
Results
The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly.
Conclusion
We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids.
This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen.
Open peer review
Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen.
For the full reviews, please go to the Reviewers' comments section.
doi:10.1186/1745-6150-1-7
PMCID: PMC1462988  PMID: 16545108
24.  Computational models with thermodynamic and composition features improve siRNA design 
BMC Bioinformatics  2006;7:65.
Background
Small interfering RNAs (siRNAs) have become an important tool in cell and molecular biology. Reliable design of siRNA molecules is essential for the needs of large functional genomics projects.
Results
To improve the design of efficient siRNA molecules, we performed a comparative, thermodynamic and correlation analysis on a heterogeneous set of 653 siRNAs collected from the literature. We used this training set to select siRNA features and optimize computational models. We identified 18 parameters that correlate significantly with silencing efficiency. Some of these parameters characterize only the siRNA sequence, while others involve the whole mRNA. Most importantly, we derived an siRNA position-dependent consensus, and optimized the free-energy difference of the 5' and 3' terminal dinucleotides of the siRNA antisense strand. The position-dependent consensus is based on correlation and t-test analyses of the training set, and accounts for both significantly preferred and avoided nucleotides in all sequence positions. On the training set, the two parameters' correlation with silencing efficiency was 0.5 and 0.36, respectively. Among other features, a dinucleotide content index and the frequency of potential targets for siRNA in the mRNA added predictive power to our model (R = 0.55). We showed that our model is effective for predicting the efficiency of siRNAs at different concentrations.
We optimized a neural network model on our training set using three parameters characterizing the siRNA sequence, and predicted efficiencies for the test siRNA dataset recently published by Novartis. On this validation set, the correlation coefficient between predicted and observed efficiency was 0.75. Using the same model, we performed a transcriptome-wide analysis of optimal siRNA targets for 22,600 human mRNAs.
Conclusion
We demonstrated that the properties of the siRNAs themselves are essential for efficient RNA interference. The 5' ends of antisense strands of efficient siRNAs are U-rich and possess a content similarity to the pyrimidine-rich oligonucleotides interacting with the polypurine RNA tracks that are recognized by RNase H. The advantage of our method over similar methods is the small number of parameters. As a result, our method requires a much smaller training set to produce consistent results. Other mRNA features, though expensive to compute, can slightly improve our model.
doi:10.1186/1471-2105-7-65
PMCID: PMC1431570  PMID: 16472402
25.  Identification and functional analysis of ‘hypothetical’ genes expressed in Haemophilus influenzae 
Nucleic Acids Research  2004;32(8):2353-2361.
The progress in genome sequencing has led to a rapid accumulation in GenBank submissions of uncharacterized ‘hypothetical’ genes. These genes, which have not been experimentally characterized and whose functions cannot be deduced from simple sequence comparisons alone, now comprise a significant fraction of the public databases. Expression analyses of Haemophilus influenzae cells using a combination of transcriptomic and proteomic approaches resulted in confident identification of 54 ‘hypothetical’ genes that were expressed in cells under normal growth conditions. In an attempt to understand the functions of these proteins, we used a variety of publicly available analysis tools. Close homologs in other species were detected for each of the 54 ‘hypothetical’ genes. For 16 of them, exact functional assignments could be found in one or more public databases. Additionally, we were able to suggest general functional characterization for 27 more genes (comprising ∼80% total). Findings from this analysis include the identification of a pyruvate-formate lyase-like operon, likely to be expressed not only in H.influenzae but also in several other bacteria. Further, we also observed three genes that are likely to participate in the transport and/or metabolism of sialic acid, an important component of the H.influenzae lipo-oligosaccharide. Accurate functional annotation of uncharacterized genes calls for an integrative approach, combining expression studies with extensive computational analysis and curation, followed by eventual experimental verification of the computational predictions.
doi:10.1093/nar/gkh555
PMCID: PMC419445  PMID: 15121896

Results 1-25 (30)