Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Genome Sequence Analysis Indicates that the Model Eukaryote Nematostella vectensis Harbors Bacterial Consorts 
Applied and Environmental Microbiology  2013;79(22):6868-6873.
Analysis of the genome sequence of the starlet sea anemone, Nematostella vectensis, reveals many genes whose products are phylogenetically closer to proteins encoded by bacteria or bacteriophages than to any metazoan homologs. One explanation for such sequence affinities could be that these genes have been horizontally transferred from bacteria to the Nematostella lineage. We show, however, that bacterium-like and phage-like genes sequenced by the N. vectensis genome project tend to cluster on separate scaffolds, which typically do not include eukaryotic genes and differ from the latter in their GC contents. Moreover, most of the bacterium-like genes in N. vectensis either lack introns or the introns annotated in such genes are false predictions that, when translated, often restore the missing portions of their predicted protein products. In a freshwater cnidarian, Hydra, for which a proteobacterial endosymbiont is known, these gene features have been used to delineate the DNA of that endosymbiont sampled by the genome sequencing project. We predict that a large fraction of bacterium-like genes identified in the N. vectensis genome similarly are drawn from the contemporary bacterial consorts of the starlet sea anemone. These uncharacterized bacteria associated with N. vectensis are a proteobacterium and a representative of the phylum Bacteroidetes, each represented in the database by an apparently random sample of informational and operational genes. A substantial portion of a putative bacteriophage genome was also detected, which would be especially unlikely to have been transferred to a eukaryote.
PMCID: PMC3811558  PMID: 23995941
2.  Computational methods for Gene Orthology inference 
Briefings in Bioinformatics  2011;12(5):379-391.
Accurate inference of orthologous genes is a pre-requisite for most comparative genomics studies, and is also important for functional annotation of new genomes. Identification of orthologous gene sets typically involves phylogenetic tree analysis, heuristic algorithms based on sequence conservation, synteny analysis, or some combination of these approaches. The most direct tree-based methods typically rely on the comparison of an individual gene tree with a species tree. Once the two trees are accurately constructed, orthologs are straightforwardly identified by the definition of orthology as those homologs that are related by speciation, rather than gene duplication, at their most recent point of origin. Although ideal for the purpose of orthology identification in principle, phylogenetic trees are computationally expensive to construct for large numbers of genes and genomes, and they often contain errors, especially at large evolutionary distances. Moreover, in many organisms, in particular prokaryotes and viruses, evolution does not appear to have followed a simple ‘tree-like’ mode, which makes conventional tree reconciliation inapplicable. Other, heuristic methods identify probable orthologs as the closest homologous pairs or groups of genes in a set of organisms. These approaches are faster and easier to automate than tree-based methods, with efficient implementations provided by graph-theoretical algorithms enabling comparisons of thousands of genomes. Comparisons of these two approaches show that, despite conceptual differences, they produce similar sets of orthologs, especially at short evolutionary distances. Synteny also can aid in identification of orthologs. Often, tree-based, sequence similarity- and synteny-based approaches can be combined into flexible hybrid methods.
PMCID: PMC3178053  PMID: 21690100
homolog; ortholog; paralog; xenolog; orthologous groups; tree reconciliation; comparative genomics
3.  Orthologous Gene Clusters and Taxon Signature Genes for Viruses of Prokaryotes 
Journal of Bacteriology  2013;195(5):941-950.
Viruses are the most abundant biological entities on earth and encompass a vast amount of genetic diversity. The recent rapid increase in the number of sequenced viral genomes has created unprecedented opportunities for gaining new insight into the structure and evolution of the virosphere. Here, we present an update of the phage orthologous groups (POGs), a collection of 4,542 clusters of orthologous genes from bacteriophages that now also includes viruses infecting archaea and encompasses more than 1,000 distinct virus genomes. Analysis of this expanded data set shows that the number of POGs keeps growing without saturation and that a substantial majority of the POGs remain specific to viruses, lacking homologues in prokaryotic cells, outside known proviruses. Thus, the great majority of virus genes apparently remains to be discovered. A complementary observation is that numerous viral genomes remain poorly, if at all, covered by POGs. The genome coverage by POGs is expected to increase as more genomes are sequenced. Taxon-specific, single-copy signature genes that are not observed in prokaryotic genomes outside detected proviruses were identified for two-thirds of the 57 taxa (those with genomes available from at least 3 distinct viruses), with half of these present in all members of the respective taxon. These signatures can be used to specifically identify the presence and quantify the abundance of viruses from particular taxa in metagenomic samples and thus gain new insights into the ecology and evolution of viruses in relation to their hosts.
PMCID: PMC3571318  PMID: 23222723
4.  New dimensions of the virus world discovered through metagenomics 
Trends in Microbiology  2009;18(1):11-19.
Metagenomic analysis of viruses suggests novel patterns of evolution, changes the existing ideas of the composition of the virus world and reveals novel groups of viruses and virus-like agents. The gene composition of the marine DNA virome is dramatically different from that of known bacteriophages. The virome is dominated by rare genes, many of which might be contained within virus-like entities such as gene transfer agents. Analysis of marine metagenomes thought to consist mostly of bacterial genes revealed a variety of sequences homologous to conserved genes of eukaryotic nucleocytoplasmic large DNA viruses, resulting in the discovery of diverse members of previously undersampled groups and suggesting the existence of new classes of virus-like agents. Unexpectedly, metagenomics of marine RNA viruses showed that representatives of only one superfamily of eukaryotic viruses, the picorna-like viruses, dominate the RNA virome.
PMCID: PMC3293453  PMID: 19942437
6.  Comparison of Pattern Detection Methods in Microarray Time Series of the Segmentation Clock 
PLoS ONE  2008;3(8):e2856.
While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.
PMCID: PMC2481401  PMID: 18682743
7.  Natural history of S-adenosylmethionine-binding proteins 
S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S-adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S-adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S-adenosylmethionine-binding proteins.
Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. There were also cases of recruitment of other relatively common folds for S-adenosylmethionine binding. Several classes of proteins have unique unrelated folds, specialized for just one type of chemistry and unified by the theme of internal domain duplications. In several cases, functional divergence is evident, when evolutionarily related enzymes have changed the mode of binding and the type of chemical transformation of S-adenosylmethionine. There are also instances of functional convergence, when biochemically similar processes are performed by drastically different classes of S-adenosylmethionine-binding proteins.
Comparison of remote sequence similarities and analysis of phyletic patterns suggests that the last universal common ancestor of cellular life had between 10 and 20 S-adenosylmethionine-binding proteins from at least 5 fold classes, providing for S-adenosylmethionine formation, polyamine biosynthesis, and methylation of several substrates, including nucleic acids and peptide chain release factor.
We have observed several novel relationships between families that were not known to be related before, and defined 15 large superfamilies of SAM-binding proteins, at least 5 of which may have been represented in the last common ancestor.
PMCID: PMC1282579  PMID: 16225687
8.  Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns 
Genome Biology  2004;5(5):R32.
A hierarchy of 3,688 phyletic patterns was characterized encompassing more than 5,000 known protein-coding genes from 66 complete microbial genomes. The results indicate that gene loss and displacement has occurred in the evolution of most pathways.
Phyletic patterns denote the presence and absence of orthologous genes in completely sequenced genomes and are used to infer functional links between genes, on the assumption that genes involved in the same pathway or functional system are co-inherited by the same set of genomes. However, this basic premise has not been quantitatively tested, and the limits of applicability of the phyletic-pattern method remain unknown.
We characterized a hierarchy of 3,688 phyletic patterns encompassing more than 5,000 known protein-coding genes from 66 complete microbial genomes, using different distances, clustering algorithms, and measures of cluster quality. The most sensitive set of parameters recovered 223 clusters, each consisting of genes that belong to the same metabolic pathway or functional system. Fifty-six clusters included unexpected genes with plausible functional links to the rest of the cluster. Only a small percentage of known pathways and multiprotein complexes are co-inherited as one cluster; most are split into many clusters, indicating that gene loss and displacement has occurred in the evolution of most pathways.
Phyletic patterns of functionally linked genes are perturbed by differential gains, losses and displacements of orthologous genes in different species, reflecting the high plasticity of microbial genomes. Groups of genes that are co-inherited can, however, be recovered by hierarchical clustering, and may represent elementary functional modules of cellular metabolism. The phyletic patterns approach alone can confidently predict the functional linkages for about 24% of the entire data set.
PMCID: PMC416468  PMID: 15128446
9.  The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms 
Runx genes encode proteins defined by the highly conserved Runt DNA-binding domain. Studies of Runx genes and proteins in model organisms indicate that they are key transcriptional regulators of animal development. However, little is known about Runx gene evolution.
A phylogenetically broad sampling of publicly available Runx gene sequences was collected. In addition to the published sequences from mouse, sea urchin, Drosophila melanogaster and Caenorhabditis elegans, we collected several previously uncharacterised Runx sequences from public genome sequence databases. Among deuterostomes, mouse and pufferfish each contain three Runx genes, while the tunicate Ciona intestinalis and the sea urchin Strongylocentrotus purpuratus were each found to have only one Runx gene. Among protostomes, C. elegans has a single Runx gene, while Anopheles gambiae has three and D. melanogaster has four, including two genes that have not been previously described. Comparative sequence analysis reveals two highly conserved introns, one within and one just downstream of the Runt domain. All vertebrate Runx genes utilize two alternative promoters.
In the current public sequence database, the Runt domain is found only in bilaterians, suggesting that it may be a metazoan invention. Bilaterians appear to ancestrally contain a single Runx gene, suggesting that the multiple Runx genes in vertebrates and insects arose by independent duplication events within those respective lineages. At least two introns were present in the primordial bilaterian Runx gene. Alternative promoter usage arose prior to the duplication events that gave rise to three Runx genes in vertebrates.
PMCID: PMC153517  PMID: 12659662
10.  Functional Specialization and Evolution of Leader Proteinases in the Family Closteroviridae 
Journal of Virology  2001;75(24):12153-12160.
Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.
PMCID: PMC116111  PMID: 11711606
11.  Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences 
Genome Biology  2001;2(12):research0051.1-research0051.11.
Computational predictions are critical for directing the experimental study of protein functions. Therefore it is paradoxical when an apparently erroneous computational prediction seems to be supported by experiment.
We analyzed six cases where application of novel or conventional computational methods for protein sequence and structure analysis led to non-trivial predictions that were subsequently supported by direct experiments. We show that, on all six occasions, the original prediction was unjustified, and in at least three cases, an alternative, well-supported computational prediction, incompatible with the original one, could be derived. The most unusual cases involved the identification of an archaeal cysteinyl-tRNA synthetase, a dihydropteroate synthase and a thymidylate synthase, for which experimental verifications of apparently erroneous computational predictions were reported. Using sequence-profile analysis, multiple alignment and secondary-structure prediction, we have identified the unique archaeal 'cysteinyl-tRNA synthetase' as a homolog of extracellular polygalactosaminidases, and the 'dihydropteroate synthase' as a member of the β-lactamase-like superfamily of metal-dependent hydrolases.
In each of the analyzed cases, the original computational predictions could be refuted and, in some instances, alternative strongly supported predictions were obtained. The nature of the experimental evidence that appears to support these predictions remains an open question. Some of these experiments might signify discovery of extremely unusual forms of the respective enzymes, whereas the results of others could be due to artifacts.
PMCID: PMC64836  PMID: 11790254

Results 1-11 (11)