PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (50)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Persister formation in Staphylococcus aureus is associated with ATP depletion 
Nature microbiology  2016;1:16051.
Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic infections and antibiotic treatment failure1–3. In Escherichia coli, toxin/antitoxin (TA) modules have been linked to persister formation4–6. The mechanism of persister formation in Gram-positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrance into stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers is associated with a 100–1000 fold increase in the likelihood of survival to antibiotic challenge. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotics.
doi:10.1038/nmicrobiol.2016.51
PMCID: PMC4932909  PMID: 27398229
2.  The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials 
Critical Care  2016;20:259.
Background
Intolerance to enteral nutrition is common in critically ill adults, and may result in significant morbidity including ileus, abdominal distension, vomiting and potential aspiration events. Prokinetic agents are prescribed to improve gastric emptying. However, the efficacy and safety of these agents in critically ill patients is not well-defined. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy and safety of prokinetic agents in critically ill patients.
Methods
We searched MEDLINE, EMBASE, and Cochrane Library from inception up to January 2016. Eligible studies included randomized controlled trials (RCTs) of critically ill adults assigned to receive a prokinetic agent or placebo, and that reported relevant clinical outcomes. Two independent reviewers screened potentially eligible articles, selected eligible studies, and abstracted pertinent data. We calculated pooled relative risk (RR) for dichotomous outcomes and mean difference for continuous outcomes, with the corresponding 95 % confidence interval (CI). We assessed risk of bias using Cochrane risk of bias tool, and the quality of evidence using grading of recommendations assessment, development, and evaluation (GRADE) methodology.
Results
Thirteen RCTs (enrolling 1341 patients) met our inclusion criteria. Prokinetic agents significantly reduced feeding intolerance (RR 0.73, 95 % CI 0.55, 0.97; P = 0.03; moderate certainty), which translated to 17.3 % (95 % CI 5, 26.8 %) absolute reduction in feeding intolerance. Prokinetics also reduced the risk of developing high gastric residual volumes (RR 0.69; 95 % CI 0.52, 0.91; P = 0.009; moderate quality) and increased the success of post-pyloric feeding tube placement (RR 1.60, 95 % CI 1.17, 2.21; P = 0.004; moderate quality). There was no significant improvement in the risk of vomiting, diarrhea, intensive care unit (ICU) length of stay or mortality. Prokinetic agents also did not significantly increase the rate of diarrhea.
Conclusion
There is moderate-quality evidence that prokinetic agents reduce feeding intolerance in critically ill patients compared to placebo or no intervention. However, the impact on other clinical outcomes such as pneumonia, mortality, and ICU length of stay is unclear.
Electronic supplementary material
The online version of this article (doi:10.1186/s13054-016-1441-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13054-016-1441-z
PMCID: PMC4986344  PMID: 27527069
Prokinetic agents; Critical illness; Gastroparesis; Enteral nutrition; Systematic review
3.  High Persister Mutants in Mycobacterium tuberculosis 
PLoS ONE  2016;11(5):e0155127.
Mycobacterium tuberculosis forms drug-tolerant persister cells that are the probable cause of its recalcitrance to antibiotic therapy. While genetically identical to the rest of the population, persisters are dormant, which protects them from killing by bactericidal antibiotics. The mechanism of persister formation in M. tuberculosis is not well understood. In this study, we selected for high persister (hip) mutants and characterized them by whole genome sequencing and transcriptome analysis. In parallel, we identified and characterized clinical isolates that naturally produce high levels of persisters. We compared the hip mutants obtained in vitro with clinical isolates to identify candidate persister genes. Genes involved in lipid biosynthesis, carbon metabolism, toxin-antitoxin systems, and transcriptional regulators were among those identified. We also found that clinical hip isolates exhibited greater ex vivo survival than the low persister isolates. Our data suggest that M. tuberculosis persister formation involves multiple pathways, and hip mutants may contribute to the recalcitrance of the infection.
doi:10.1371/journal.pone.0155127
PMCID: PMC4866775  PMID: 27176494
4.  Efficacy and safety of proton pump inhibitors for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis of randomized trials 
Critical Care  2016;20:120.
Background
The relative efficacy and safety of proton pump inhibitors (PPIs) compared to histamine-2-receptor antagonists (H2RAs) should guide their use in reducing bleeding risk in the critically ill.
Methods
We searched the Cochrane library, MEDLINE, EMBASE, ACPJC, clinical trials registries, and conference proceedings through November 2015 without language or publication date restrictions. Only randomized controlled trials (RCTs) of PPIs vs H2RAs for stress ulcer prophylaxis in critically ill adults for clinically important bleeding, overt gastrointestinal (GI) bleeding, nosocomial pneumonia, mortality, ICU length of stay and Clostridium difficile infection were included. We used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess our confidence in the evidence for each outcome.
Results
In 19 trials enrolling 2117 patients, PPIs were more effective than H2RAs in reducing the risk of clinically important GI bleeding (RR 0.39; 95 % CI 0.21, 0.71; P = 0.002; I2 = 0 %, moderate confidence) and overt GI bleeding (RR 0.48; 95 % CI 0.34, 0.66; P < 0.0001; I2 = 3 %, moderate confidence). PPI use did not significantly affect risk of pneumonia (RR 1.12; 95 % CI 0.86, 1.46; P = 0.39; I2 = 2 %, low confidence), mortality (RR 1.05; 95 % CI 0.87, 1.27; P = 0.61; I2 = 0 %, moderate confidence), or ICU length of stay (mean difference (MD), –0.38 days; 95 % CI –1.49, 0.74; P = 0.51; I2 = 30 %, low confidence). No RCT reported Clostridium difficile infection.
Conclusions
PPIs were superior to H2RAs in preventing clinically important and overt GI bleeding, without significantly increasing the risk of pneumonia or mortality. Their impact on Clostridium difficile infection is yet to be determined.
Electronic supplementary material
The online version of this article (doi:10.1186/s13054-016-1305-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s13054-016-1305-6
PMCID: PMC4855320  PMID: 27142116
5.  Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells 
Borrelia burgdorferi is the causative agent of Lyme disease, which affects an estimated 300,000 people annually in the United States. When treated early, the disease usually resolves, but when left untreated, it can result in symptoms such as arthritis and encephalopathy. Treatment of the late-stage disease may require multiple courses of antibiotic therapy. Given that antibiotic resistance has not been observed for B. burgdorferi, the reason for the recalcitrance of late-stage disease to antibiotics is unclear. In other chronic infections, the presence of drug-tolerant persisters has been linked to recalcitrance of the disease. In this study, we examined the ability of B. burgdorferi to form persisters. Killing growing cultures of B. burgdorferi with antibiotics used to treat the disease was distinctly biphasic, with a small subpopulation of surviving cells. Upon regrowth, these cells formed a new subpopulation of antibiotic-tolerant cells, indicating that these are persisters rather than resistant mutants. The level of persisters increased sharply as the culture transitioned from the exponential to stationary phase. Combinations of antibiotics did not improve killing. Daptomycin, a membrane-active bactericidal antibiotic, killed stationary-phase cells but not persisters. Mitomycin C, an anticancer agent that forms adducts with DNA, killed persisters and eradicated growing and stationary cultures of B. burgdorferi. Finally, we examined the ability of pulse dosing an antibiotic to eliminate persisters. After addition of ceftriaxone, the antibiotic was washed away, surviving persisters were allowed to resuscitate, and the antibiotic was added again. Four pulse doses of ceftriaxone killed persisters, eradicating all live bacteria in the culture.
doi:10.1128/AAC.00864-15
PMCID: PMC4505243  PMID: 26014929
6.  On the Mechanism of Berberine–INF55 (5-Nitro-2-phenylindole) Hybrid Antibacterials* 
Australian journal of chemistry  2015;67:1471-1480.
Berberine–INF55 hybrids are a promising class of antibacterials that combine berberine and the NorA multidrug resistance pump inhibitor INF55 (5-nitro-2-phenylindole) together in one molecule via a chemically stable linkage. Previous studies demonstrated the potential of these compounds for countering efflux-mediated antibacterial drug resistance but they didn’t establish whether the compounds function as originally intended, i.e. with the berberine moiety providing antibacterial activity and the attached INF55 component independently blocking multidrug resistance pumps, thereby enhancing the activity of berberine by reducing its efflux. We hypothesised that if the proposed mechanism is correct, then hybrids carrying more potent INF55 pump inhibitor structures should show enhanced antibacterial effects relative to those bearing weaker inhibitors. Two INF55 analogues showing graded reductions in NorA inhibitory activity compared with INF55 were identified and their corresponding berberine–INF55 hybrids carrying equivalent INF55 inhibitor structures synthesised. Multiple assays comparing the antibacterial effects of the hybrids and their corresponding berberine–INF55 analogue combinations showed that the three hybrids all show very similar activities, leading us to conclude that the antibacterial mechanism(s) of berberine–INF55 hybrids is different from berberine–INF55 combinations.
doi:10.1071/CH14426
PMCID: PMC4720975  PMID: 26806960
7.  Pseudomonas aeruginosa biofilms in disease 
Microbial ecology  2013;68(1):1-12.
Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. It’s deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder (COPD), surface growth on implanted biomaterials, and within hospital surface and water supplies where it poses a host of threats to vulnerable patients [1,2]. Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps [3]and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics [4], making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics [5]. This challenge is compounded by the ability of P. aerugionsa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections.
doi:10.1007/s00248-013-0297-x
PMCID: PMC3977026  PMID: 24096885
Biofilm; Tolerance; Persister; Antibiotic; Resistance; Wound; Infection
8.  Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2 
Chemistry & biology  2014;21(4):509-518.
Summary
Languishing antibiotic discovery and flourishing antibiotic resistance have prompted development of alternative untapped sources for antibiotic discovery, including previously uncultured bacteria. Here, we screen extracts from uncultured species against M. tuberculosis and identify lassomycin, an antibiotic that exhibits potent bactericidal activity against both growing and dormant mycobacteria, including drug-resistant forms of M. tuberculosis, but little activity against other bacteria or mammalian cells. Lassomycin is a highly basic, ribosomally-encoded cyclic peptide with an unusual structural fold that only partially resembles that of other lasso peptides. We show that lassomycin binds to a highly acidic region of the ClpC1 ATPase complex and markedly stimulates its ATPase activity without stimulating ClpP1P2 catalyzed protein breakdown, which is essential for viability of mycobacteria. This mechanism, uncoupling ATPase from proteolytic activity, accounts for lassomycin's bacteriocidal activity.
doi:10.1016/j.chembiol.2014.01.014
PMCID: PMC4060151  PMID: 24684906
Drug discovery; Mycobacterium tuberculosis; Lassomycin; Species specific; Lasso peptide
9.  Genetic Basis of Persister Tolerance to Aminoglycosides in Escherichia coli 
mBio  2015;6(2):e00078-15.
ABSTRACT
Persisters are dormant variants that form a subpopulation of drug-tolerant cells largely responsible for the recalcitrance of chronic infections. However, our understanding of the genetic basis of antibiotic tolerance remains incomplete. In this study, we applied transposon sequencing (Tn-Seq) to systematically investigate the mechanism of aminoglycoside tolerance in Escherichia coli. We constructed a highly saturated transposon library that covered the majority of E. coli genes and promoter regions and exposed a stationary-phase culture to a lethal dose of gentamicin. Tn-Seq was performed to evaluate the survival of each mutant to gentamicin exposure. We found that the disruption of several distinct pathways affected gentamicin tolerance. We identified 105 disrupted gene/promoter regions with a more than 5-fold reduction in gentamicin tolerance and 37 genes with a more than 5-fold increased tolerance. Functional cluster analysis suggests that deficiency in motility and amino acid synthesis significantly diminished persisters tolerant to gentamicin, without changing the MIC. Amino acid auxotrophs, including serine, threonine, glutamine, and tryptophan auxotrophs, exhibit strongly decreased tolerance to gentamicin, which cannot be restored by supplying the corresponding amino acids to the culture. Interestingly, supplying these amino acids to wild-type E. coli sensitizes stationary-phase cells to gentamicin, possibly through the inhibition of amino acid synthesis. In addition, we found that the deletion of amino acid synthesis genes significantly increases gentamicin uptake in stationary phase, while the deletion of flagellar genes does not affect gentamicin uptake. We conclude that activation of motility and amino acid biosynthesis contributes to the formation of persisters tolerant to gentamicin.
IMPORTANCE
Persisters are responsible for the recalcitrance of chronic infections to antibiotics. The pathways of persister formation in E. coli are redundant, and our understanding of the mechanism of persister formation is incomplete. Using a highly saturated transposon insertion library, we systematically analyzed the contribution of different cellular processes to the formation of persisters tolerant to aminoglycosides. Unexpectedly, we found that activation of amino acid synthesis and motility strongly contributes to persister formation. The approach used in this study leads to an understanding of aminoglycoside tolerance and provides a general method to identify genes affecting persister formation.
doi:10.1128/mBio.00078-15
PMCID: PMC4453570  PMID: 25852159
10.  Diarylacylhydrazones: Clostridium-Selective Antibacterials with Activity Against Stationary-Phase Cells 
Current antibiotics for treating Clostridium difficile infections (CDI), i.e. metronidazole, vancomycin and more recently fidaxomicin, are mostly effective but treatment failure and disease relapse remain as significant clinical problems. The shortcomings of these agents are attributed to their low selectivity for C. difficile over normal gut microflora and their ineffectiveness against C. difficile spores. This paper reports that certain diarylacylhydrazones identified during a high-throughput screening/counter-screening campaign show selective activity against two Clostridium species (C. difficile and C. perfringens) over common gut commensals. Representative examples are shown to possess activity similar to vancomycin against clinical C. difficile strains and to kill stationary-phase C. difficile cells, which are responsible for spore production. Structure-activity relationships with additional synthesised analogues suggested a protonophoric mechanism may play a role in the observed activity/selectivity and this was supported by the well-known protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) showing selective anti-Clostridium effects and activity similar to diarylacylhydrazones against stationary-phase C. difficile cells. Two diarylacylhydrazones were shown to be non-toxic towards human FaDu and Hep G2 cells indicating that further studies with the class are warranted towards new drugs for CDI.
doi:10.1016/j.bmcl.2013.12.015
PMCID: PMC3912389  PMID: 24360560
Clostridium difficile; antibacterial; protonophore; diarylacylhydrazone; CCCP; stationary phase cells
11.  In Vitro and In Vivo Activities of HPi1, a Selective Antimicrobial against Helicobacter pylori 
A high-throughput screen (HTS) was performed to identify molecules specifically active against Helicobacter pylori, the causative agent of peptic ulcer and gastric carcinoma. Currently, treatment of H. pylori infection is suboptimal, with failure rates approaching 25%, despite triple therapy with two broad-spectrum antibiotics and a proton pump inhibitor or quadruple therapy with added bismuth. The HTS was performed in 384-well plates, and reduction of the metabolic indicator resazurin was used as a reporter for cell growth. Diverse molecules from commercial sources were identified as hits, and in vitro validations included measurements of MIC and time-dependent killing as well as anaerobic susceptibility testing against a panel of gut microbes. In vivo validation included testing in the mouse model of H. pylori infection. The small molecule HPi1 (3-hydrazinoquinoxaline-2-thiol) had excellent potency, with an MIC of 0.08 to 0.16 μg/ml and good selectivity for H. pylori compared to a panel of commensal bacteria. HPi1 was also effective in a mouse model of H. pylori infection, reducing colony counts to below the limit of detection after oral dosing of 25 mg/kg/day for 3 days. HPi1 is a promising lead in the search for more effective and specific H. pylori therapeutics.
doi:10.1128/AAC.02573-13
PMCID: PMC4068456  PMID: 24687512
12.  Tackling antibiotic resistance 
Nature reviews. Microbiology  2011;9(12):894-896.
The development and spread of antibiotic resistance in bacteria is a universal threat to both humans and animals that is generally not preventable, but can nevertheless be controlled and must be tackled in the most effective ways possible. To explore how the problem of antibiotic resistance might best be addressed, a group of thirty scientists from academia and industry gathered at the Banbury Conference Centre in Cold Spring Harbor, New York, May 16-18, 2011. From these discussions emerged a priority list of steps that need to be taken to resolve this global crisis.
doi:10.1038/nrmicro2693
PMCID: PMC4206945  PMID: 22048738
13.  A Screen for and Validation of Prodrug Antimicrobials 
The rise of resistant pathogens and chronic infections tolerant to antibiotics presents an unmet need for novel antimicrobial compounds. Identifying broad-spectrum leads is challenging due to the effective penetration barrier of Gram-negative bacteria, formed by an outer membrane restricting amphipathic compounds, and multidrug resistance (MDR) pumps. In chronic infections, pathogens are shielded from the immune system by biofilms or host cells, and dormant persisters tolerant to antibiotics are responsible for recalcitrance to chemotherapy with conventional antibiotics. We reasoned that the dual need for broad-spectrum and sterilizing compounds could be met by developing prodrugs that are activated by bacterium-specific enzymes and that these generally reactive compounds could kill persisters and accumulate over time due to irreversible binding to targets. We report the development of a screen for prodrugs, based on identifying compounds that nonspecifically inhibit reduction of the viability dye alamarBlue, and then eliminate generally toxic compounds by testing for cytotoxicity. A large pilot of 55,000 compounds against Escherichia coli produced 20 hits, 3 of which were further examined. One compound, ADC111, is an analog of a known nitrofuran prodrug nitrofurantoin, and its activity depends on the presence of activating enzymes nitroreductases. ADC112 is an analog of another known antimicrobial tilbroquinol with unknown mechanism of action, and ADC113 does not belong to an approved class. All three compounds had a good spectrum and showed good to excellent activity against persister cells in biofilm and stationary cultures. These results suggest that screening for overlooked prodrugs may present a viable platform for antimicrobial discovery.
doi:10.1128/AAC.02136-13
PMCID: PMC3957891  PMID: 24342644
14.  Potentiation of Azole Antifungals by 2-Adamantanamine 
Azoles are among the most successful classes of antifungals. They act by inhibiting α-14 lanosterol demethylase in the ergosterol biosynthesis pathway. Oropharyngeal candidiasis (OPC) occurs in about 90% of HIV-infected individuals, and 4 to 5% are refractory to current therapies, including azoles, due to the formation of resistant biofilms produced in the course of OPC. We reasoned that compounds affecting a different target may potentiate azoles to produce increased killing and an antibiofilm therapeutic. 2-Adamantanamine (AC17) was identified in a screen for compounds potentiating the action of miconazole against biofilms of Candida albicans. AC17, a close structural analog to the antiviral amantadine, did not affect the viability of C. albicans but caused the normally fungistatic azoles to become fungicidal. Transcriptome analysis of cells treated with AC17 revealed that the ergosterol and filamentation pathways were affected. Indeed, cells exposed to AC17 had decreased ergosterol contents and were unable to invade agar. In vivo, the combination of AC17 and fluconazole produced a significant reduction in fungal tissue burden in a guinea pig model of cutaneous candidiasis, while each treatment alone did not have a significant effect. The combination of fluconazole and AC17 also showed improved efficacy (P value of 0.018) compared to fluconazole alone when fungal lesions were evaluated. AC17 is a promising lead in the search for more effective antifungal therapeutics.
doi:10.1128/AAC.00294-13
PMCID: PMC3719723  PMID: 23689724
15.  Staphylococcus aureus persisters tolerant to bactericidal antibiotics 
Bacterial persister cells are non- or slow growing reversible phenotypic variants of the wild type, tolerant to bactericidal antibiotics. We here analyzed Staphylococcus aureus persister levels by monitoring colony forming unit (CFU) counts of planktonically grown cells treated with six different antimicrobials over time. Model laboratory strains HG001-HG003, SA113 and small colony variant (SCV) strains hemB and menD were challenged by the compounds at different logs of minimal inhibitory concentration (MIC) in exponential or stationary growth phase. Antibiotic tolerance was usually elevated in SCV strains compared to normally growing cells and in stationary vs. exponential phase cultures. Biphasic killing kinetics, typical for persister cell enrichment, were observed in both growth phases under different selective conditions. Treatment of exponential phase cultures of HG001-HG003 with 10-fold MIC of tobramycin resulted in the isolation of persisters which upon cultivation on plates formed either normal or phenotypically stable small colonies. Trajectories of different killing curves indicated physiological heterogeneity within persister subpopulations. Daptomycin added at 100-fold MIC to stationary phase SA113 cells rapidly isolated very robust persisters. Fractions of antibiotic tolerant cells were observed with all S. aureus strains and mutants tested. Our results refute the hypothesis that S. aureus stationary phase cells are equivalent to persisters, as not all of these cells showed antibiotic tolerance. Isolation of S. aureus persisters of different robustness seems to dependent on the kind and concentration of the antibiotic, as well as on the strain used.
doi:10.1159/000342449
PMCID: PMC3518770  PMID: 22986269
persister cell; multi drug tolerance; antibiotics; antimicrobials; Staphylococcus aureus
16.  Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers 
FEBS letters  2012;586(16):2529-2534.
We studied membrane activity of the bacterial peptide TisB involved in persister cell formation. TisB and its analogs form multi-state ion-conductive pores in planar lipid bilayers with all states of pores displaying similar anionic selectivity. TisB analogs differing by ±1 elementary charges show corresponding changes in selectivity. Probing TisB pores with poly-(ethylene glycol)s reveals only restricted partitioning even for the smallest polymers, suggesting that the pores are characterized by a relatively small diameter. These findings allow us to suggest that TisB forms clusters of narrow pores that are essential for its mechanism of action.
doi:10.1016/j.febslet.2012.06.021
PMCID: PMC3498054  PMID: 22728134
bacteria multi-drug tolerance; toxin/antitoxin system; multi-level conductance; cluster pore structure
17.  Role of Oxidative Stress in Persister Tolerance 
Persisters are dormant phenotypic variants of regular cells that are tolerant to antibiotics and play an important role in recalcitrance of chronic infections to therapy. Persisters can be produced stochastically in a population untreated with antibiotics. At the same time, a deterministic component of persister formation has also been documented in a population of cells with DNA damaged by fluoroquinolone treatment. Expression of the SOS response under these conditions induces formation of persisters by increasing expression of the TisB toxin. This suggests that other stress responses may also contribute to persister formation. Of particular interest is oxidative stress that pathogens encounter during infection. Activated macrophages produce reactive oxygen and nitrogen species which induce the SoxRS and OxyR regulons. Genes controlled by these regulons deactivate the oxidants and promote repair. We examined the ability of oxidative stress induced by paraquat (PQ) to affect persister formation. Preincubation of cells with PQ produced a dramatic increase in the number of persisters surviving challenge with fluoroquinolone antibiotics. PQ did not affect killing by kanamycin or ampicillin. Persisters in a culture treated with PQ that survived a challenge with a fluoroquinolone were also highly tolerant to other antibiotics. PQ induces SoxRS, which in turn induces expression of the AcrAB-TolC multidrug-resistant (MDR) pump. Fluoroquinolones are extruded by this MDR pump, and the effect of PQ on antibiotic tolerance was largely abolished in a mutant that was defective in the pump. It appears that PQ, acting through AcrAB-TolC, reduces the concentration of fluoroquinolones in the cells. This allows a larger fraction of cells to become persisters in the presence of a fluoroquinolone. Analysis of a lexA3 mutant indeed showed a dependence of persister induction under these conditions on SOS. These findings show that induction of a classical resistance mechanism, MDR efflux, by oxidative stress leads to an increase in multidrug-tolerant persister cells.
doi:10.1128/AAC.00921-12
PMCID: PMC3421885  PMID: 22777047
18.  Correction: Regulation of the Escherichia coli HipBA Toxin-Antitoxin System by Proteolysis 
PLoS ONE  2012;7(9):10.1371/annotation/e608601c-eadd-4c11-adb2-7b605aba9c44.
doi:10.1371/annotation/e608601c-eadd-4c11-adb2-7b605aba9c44
PMCID: PMC3465168
19.  Regulation of the Escherichia coli HipBA Toxin-Antitoxin System by Proteolysis 
PLoS ONE  2012;7(6):e39185.
Bacterial populations produce antibiotic-tolerant persister cells. A number of recent studies point to the involvement of toxin/antitoxin (TA) modules in persister formation. hipBA is a type II TA module that codes for the HipB antitoxin and the HipA toxin. HipA is an EF-Tu kinase, which causes protein synthesis inhibition and dormancy upon phosphorylation of its substrate. Antitoxins are labile proteins that are degraded by one of the cytosolic ATP-dependent proteases. We followed the rate of HipB degradation in different protease deficient strains and found that HipB was stabilized in a lon- background. These findings were confirmed in an in vitro degradation assay, showing that Lon is the main protease responsible for HipB proteolysis. Moreover, we demonstrated that degradation of HipB is dependent on the presence of an unstructured carboxy-terminal stretch of HipB that encompasses the last 16 amino acid residues. Further, substitution of the conserved carboxy-terminal tryptophan of HipB to alanine or even the complete removal of this 16 residue fragment did not alter the affinity of HipB for hipBA operator DNA or for HipA indicating that the major role of this region of HipB is to control HipB degradation and hence HipA-mediated persistence.
doi:10.1371/journal.pone.0039185
PMCID: PMC3376134  PMID: 22720069
20.  Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms 
Objectives
Microbial adhesion and biofilms have important implications for human health and disease. Candida albicans is an opportunistic pathogen which forms drug-resistant biofilms that contribute to the recalcitrance of disease. We have developed a high-throughput screen for potentiators of clotrimazole, a common therapy for Candida infections, including vaginitis and thrush. The screen was performed against C. albicans biofilms grown in microtitre plates in order to target the most resilient forms of the pathogen.
Methods
Biofilm growth, in individual wells of 384-well plates, was measured using the metabolic indicator alamarBlue® and found to be very consistent and reproducible. This assay was used to test the effect of more than 120 000 small molecule compounds from the NIH Molecular Libraries Small Molecule Repository, and compounds that enhanced the activity of clotrimazole or acted on the biofilms alone were identified as hits.
Results
Nineteen compounds (0.016% hit rate) were identified and found to cause more than 30% metabolic inhibition of biofilms compared with clotrimazole alone, which had a modest effect on biofilm viability at the concentration tested. Hits were confirmed for activity against biofilms with dose–response measurements. Several compounds had increased activity in combination with clotrimazole, including a 1,3-benzothiazole scaffold that exhibited a >100-fold improvement against biofilms of three separate C. albicans isolates. Cytotoxicity experiments using human fibroblasts confirmed the presence of lead molecules with favourable antifungal activity relative to cytotoxicity.
Conclusions
We have validated a novel approach to identify antifungal potentiators and completed a high-throughput screen to identify small molecules with activity against C. albicans biofilms. These small molecules may specifically target the biofilm and make currently available antifungals more effective.
doi:10.1093/jac/dkq530
PMCID: PMC3058565  PMID: 21393183
clotrimazole; alamarBlue®; drug resistance
21.  Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters 
mBio  2011;2(3):e00100-11.
ABSTRACT
Tuberculosis continues to be a major public health problem in many parts of the world. Significant obstacles in controlling the epidemic are the length of treatment and the large reservoir of latently infected people. Bacteria form dormant, drug-tolerant persister cells, which may be responsible for the difficulty in treating both acute and latent infections. We find that in Mycobacterium  tuberculosis, low numbers of drug-tolerant persisters are present in lag and early exponential phases, increasing sharply at late exponential and stationary phases to make up ~1% of the population. This suggests that persister formation is governed by both stochastic and deterministic mechanisms. In order to isolate persisters, an exponentially growing population was treated with d-cycloserine, and cells surviving lysis were collected by centrifugation. A transcriptome of persisters was obtained by using hybridization to an Affymetrix array. The transcriptome shows downregulation of metabolic and biosynthetic pathways, consistent with a certain degree of dormancy. A set of genes was upregulated in persisters, and these are likely involved in persister formation and maintenance. A comparison of the persister transcriptome with transcriptomes obtained for several in vitro dormancy models identified a small number of genes upregulated in all cases, which may represent a core dormancy response.
IMPORTANCE
It is estimated that every third person on the planet is infected with Mycobacterium tuberculosis. The two major problems in controlling M. tuberculosis are the length of the treatment and the large reservoir of latently infected people. Dormant persister cells may be responsible for both problems. We find that M. tuberculosis produces persisters in vitro in a growth phase-dependent manner. Persisters were isolated from an exponentially growing population, and their transcriptome shows a distinct pattern of dormancy. These results give the first insight into M. tuberculosis persisters and point to possible mechanisms responsible for their formation.
doi:10.1128/mBio.00100-11
PMCID: PMC3119538  PMID: 21673191
22.  Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis▿  
Journal of Bacteriology  2010;192(23):6191-6199.
The majority of cystic fibrosis (CF) patients succumb to a chronic infection of the airway with Pseudomonas aeruginosa. Paradoxically, pathogenic strains are often susceptible to antibiotics, but the infection cannot be eradicated with antimicrobial therapy. We find that in a majority of patients with airway infections, late isolates of P. aeruginosa produce increased levels of drug-tolerant persister cells. The genomes of a clonal pair of early/late isolates from a single patient have been previously sequenced, and the late isolate (obtained at age 96 months) showed a 100-fold increase in persister levels. The 96-month isolate carries a large number of mutations, including a mutation in mutS that confers a hypermutator phenotype. There is also a mutation in the mexZ repressor controlling the expression of the MexXY-OprM multidrug pump, which results in a moderate increase in the ofloxacin, carbenicillin, and tobramycin MICs. Knocking out the mexXY locus restored the resistance to that of the parent strain but did not affect the high levels of persisters formed by the 96-month isolate. This suggests that the late isolate is a high-persister (hip) mutant. Increased persister formation was observed in exponential phase, stationary phase, and biofilm populations of the 96-month isolate. Analysis of late isolates from 14 additional patients indicated that 10 of them are hip mutants. Most of these hip mutants did not have higher drug resistance. Increased persister formation appears to be their sole mechanism for surviving chemotherapy. Taken together, these findings suggest a link between persisters and recalcitrance of CF infection and identify an overlooked culprit—high-persister mutants producing elevated levels of drug-tolerant cells. Persisters may play a similarly critical role in the recalcitrance of other chronic infections.
doi:10.1128/JB.01651-09
PMCID: PMC2981199  PMID: 20935098
23.  Isolation and Physiology of Bacteria from Contaminated Subsurface Sediments▿ †  
Applied and Environmental Microbiology  2010;76(22):7413-7419.
The majority of environmental microorganisms cannot be grown by traditional techniques. Here we employed, and contrasted with conventional plating, an alternative approach based on cultivation of microorganisms inside diffusion chambers incubated within natural samples, followed by subculturing in petri dishes. Using this approach, we isolated microorganisms from subsurface sediments from the Field Research Center (FRC) in Oak Ridge, TN. The sediments were acidic and highly contaminated with uranium, heavy metals, nitrate, and organic pollutants. Phylogenetic analysis of 16S rRNA gene sequences revealed clear differences between diversity of isolates obtained by the diffusion chamber approach and those obtained by conventional plating. The latter approach led to isolation of members of the Alpha- and Gammaproteobacteria, Actinobacteria, and Verrucomicrobia. Isolates obtained via the diffusion chamber approach represented the Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Notably, one-third of the isolates obtained by the new method were closely related to species known from previous molecular surveys conducted in the FRC area. Since the initial growth of microorganisms inside diffusion chambers occurred in the presence of the environmental stress factors, we expected the isolates we obtained to be tolerant of these factors. We investigated the physiologies of selected isolates and discovered that the majority were indeed capable of growth under low pH and/or high concentrations of heavy metals and nitrate. This indicated that in contrast to conventional isolation, the diffusion chamber-based approach leads to isolation of species that are novel, exhibit tolerance to extant environmental conditions, and match some of the species previously discovered by molecular methods.
doi:10.1128/AEM.00376-10
PMCID: PMC2976195  PMID: 20870785
24.  Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria 
PLoS ONE  2011;6(4):e18127.
Background
Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria.
Methodology/Principal Findings
In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology.
Conclusions/Significance
These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.
doi:10.1371/journal.pone.0018127
PMCID: PMC3070693  PMID: 21483731
25.  Siderophores from Neighboring Organisms Promote the Growth of Uncultured Bacteria 
Chemistry & biology  2010;17(3):254-264.
Summary
The majority of bacterial species do not grow on synthetic media. Many non-growers require growth factors from other bacteria, but the nature of these compounds is largely unknown. We show here that previously uncultured isolates from marine sediment biofilm grow on a Petri dish in the presence of cultured organisms from the same environment. The growth factors produced by one cultured helper strain were identified as new acyl-desferrioxamine siderophores. A panel of previously uncultured isolates exhibited a range of siderophore promiscuity for growth promotion. This siderophore-based approach has enabled the culturing of organisms only distantly related to previously cultured microbes. The lack of growth in the lab for many strains from this habitat stems from an inability to autonomously produce siderophores, and the resulting chemical dependence on other microorganisms regulates community establishment in the environment.
doi:10.1016/j.chembiol.2010.02.010
PMCID: PMC2895992  PMID: 20338517

Results 1-25 (50)