PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster 
BMC Genomics  2011;12:566.
Background
Despite many efforts, little is known about distribution and interactions of chromatin proteins which contribute to the specificity of chromomeric organization of interphase chromosomes. To address this issue, we used publicly available datasets from several recent Drosophila genome-wide mapping and annotation projects, in particular, those from modENCODE project, and compared molecular organization of 13 interband regions which were accurately mapped previously.
Results
Here we demonstrate that in interphase chromosomes of Drosophila cell lines, the interband regions are enriched for a specific set of proteins generally characteristic of the "open" chromatin (RNA polymerase II, CHRIZ (CHRO), BEAF-32, BRE1, dMI-2, GAF, NURF301, WDS and TRX). These regions also display reduced nucleosome density, histone H1 depletion and pronounced enrichment for ORC2, a pre-replication complex component. Within the 13 interband regions analyzed, most were around 3-4 kb long, particularly those where many of said protein features were present. We estimate there are about 3500 regions with similar properties in chromosomes of D. melanogaster cell lines, which fits quite well the number of cytologically observed interbands in salivary gland polytene chromosomes.
Conclusions
Our observations suggest strikingly similar organization of interband chromatin in polytene chromosomes and in chromosomes from cell lines thereby reflecting the existence of a universal principle of interphase chromosome organization.
doi:10.1186/1471-2164-12-566
PMCID: PMC3240664  PMID: 22093916
3.  Identical Functional Organization of Nonpolytene and Polytene Chromosomes in Drosophila melanogaster 
PLoS ONE  2011;6(10):e25960.
Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes.
doi:10.1371/journal.pone.0025960
PMCID: PMC3191165  PMID: 22022482
4.  Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome 
BMC Genomics  2010;11:318.
Background
Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster.
Results
Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles.
Conclusions
Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
doi:10.1186/1471-2164-11-318
PMCID: PMC2887417  PMID: 20492674
5.  Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis 
BMC Cancer  2006;6:36.
Background
Carcinogenesis typically involves multiple somatic mutations in caretaker (DNA repair) and gatekeeper (tumor suppressors and oncogenes) genes. Analysis of mutation spectra of the tumor suppressor that is most commonly mutated in human cancers, p53, unexpectedly suggested that somatic evolution of the p53 gene during tumorigenesis is dominated by positive selection for gain of function. This conclusion is supported by accumulating experimental evidence of evolution of new functions of p53 in tumors. These findings prompted a genome-wide analysis of possible positive selection during tumor evolution.
Methods
A comprehensive analysis of probable somatic mutations in the sequences of Expressed Sequence Tags (ESTs) from malignant tumors and normal tissues was performed in order to access the prevalence of positive selection in cancer evolution. For each EST, the numbers of synonymous and non-synonymous substitutions were calculated. In order to identify genes with a signature of positive selection in cancers, these numbers were compared to: i) expected numbers and ii) the numbers for the respective genes in the ESTs from normal tissues.
Results
We identified 112 genes with a signature of positive selection in cancers, i.e., a significantly elevated ratio of non-synonymous to synonymous substitutions, in tumors as compared to 37 such genes in an approximately equal-sized EST collection from normal tissues. A substantial fraction of the tumor-specific positive-selection candidates have experimentally demonstrated or strongly predicted links to cancer.
Conclusion
The results of EST analysis should be interpreted with extreme caution given the noise introduced by sequencing errors and undetected polymorphisms. Furthermore, an inherent limitation of EST analysis is that multiple mutations amenable to statistical analysis can be detected only in relatively highly expressed genes. Nevertheless, the present results suggest that positive selection might affect a substantial number of genes during tumorigenic somatic evolution.
doi:10.1186/1471-2407-6-36
PMCID: PMC1431556  PMID: 16469093
6.  Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection 
Biology Direct  2006;1:4.
Background
The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis.
Results
Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors.
Conclusion
The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes.
Reviewers
This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny.
doi:10.1186/1745-6150-1-4
PMCID: PMC1403748  PMID: 16542006
8.  Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes 
Nucleic Acids Research  2005;33(17):5512-5520.
By comparing sequences of human, mouse and rat orthologous genes, we show that in 5′-untranslated regions (5′-UTRs) of mammalian cDNAs but not in 3′-UTRs or coding sequences, AUG is conserved to a significantly greater extent than any of the other 63 nt triplets. This effect is likely to reflect, primarily, bona fide evolutionary conservation, rather than cDNA annotation artifacts, because the excess of conserved upstream AUGs (uAUGs) is seen in 5′-UTRs containing stop codons in-frame with the start AUG and many of the conserved AUGs are found in different frames, consistent with the location in authentic non-coding sequences. Altogether, conserved uAUGs are present in at least 20–30% of mammalian genes. Qualitatively similar results were obtained by comparison of orthologous genes from different species of the yeast genus Saccharomyces. Together with the observation that mammalian and yeast 5′-UTRs are significantly depleted in overall AUG content, these findings suggest that AUG triplets in 5′-UTRs are subject to the pressure of purifying selection in two opposite directions: the uAUGs that have no specific function tend to be deleterious and get eliminated during evolution, whereas those uAUGs that do serve a function are conserved. Most probably, the principal role of the conserved uAUGs is attenuation of translation at the initiation stage, which is often additionally regulated by alternative splicing in the mammalian 5′-UTRs. Consistent with this hypothesis, we found that open reading frames starting from conserved uAUGs are significantly shorter than those starting from non-conserved uAUGs, possibly, owing to selection for optimization of the level of attenuation.
doi:10.1093/nar/gki847
PMCID: PMC1236974  PMID: 16186132
9.  Conservation versus parallel gains in intron evolution 
Nucleic Acids Research  2005;33(6):1741-1748.
Orthologous genes from distant eukaryotic species, e.g. animals and plants, share up to 25–30% intron positions. However, the relative contributions of evolutionary conservation and parallel gain of new introns into this pattern remain unknown. Here, the extent of independent insertion of introns in the same sites (parallel gain) in orthologous genes from phylogenetically distant eukaryotes is assessed within the framework of the protosplice site model. It is shown that protosplice sites are no more conserved during evolution of eukaryotic gene sequences than random sites. Simulation of intron insertion into protosplice sites with the observed protosplice site frequencies and intron densities shows that parallel gain can account but for a small fraction (5–10%) of shared intron positions in distantly related species. Thus, the presence of numerous introns in the same positions in orthologous genes from distant eukaryotes, such as animals, fungi and plants, appears to reflect mostly bona fide evolutionary conservation.
doi:10.1093/nar/gki316
PMCID: PMC1069513  PMID: 15788746
10.  Comparative analysis of complete genomes reveals gene loss, acquisition and acceleration of evolutionary rates in Metazoa, suggests a prevalence of evolution via gene acquisition and indicates that the evolutionary rates in animals tend to be conserved 
Nucleic Acids Research  2004;32(17):5029-5035.
In this study we systematically examined the differences between the proteomes of Metazoa and other eukaryotes. Metazoans (Homo sapiens, Ceanorhabditis elegans and Drosophila melanogaster) were compared with a plant (Arabidopsis thaliana), fungi (Saccharomyces cerevisiae and Schizosaccaromyces pombe) and Encephalitozoan cuniculi. We identified 159 gene families that were probably lost in the Metazoan branch and 1263 orthologous families that were specific to Metazoa and were likely to have originated in their last common ancestor (LCA). We analyzed the evolutionary rates of pan-eukaryotic protein families and identified those with higher rates in animals. The acceleration was shown to occur in: (i) the LCA of Metazoa or (ii) independently in the Metazoan phyla. A high proportion of the accelerated Metazoan protein families was found to participate in translation and ribosome biogenesis, particularly mitochondrial. By functional analysis we show that no metabolic pathway in animals evolved faster than in other organisms. We conclude that evolution in the LCA of Metazoa was extensive and proceeded largely by gene duplication and/or invention rather than by modification of extant proteins. Finally, we show that the rate of evolution of a gene family in animals has a clear, but not absolute, tendency to be conserved.
doi:10.1093/nar/gkh833
PMCID: PMC521649  PMID: 15448184
11.  Prevalence of intron gain over intron loss in the evolution of paralogous gene families 
Nucleic Acids Research  2004;32(12):3724-3733.
The mechanisms and evolutionary dynamics of intron insertion and loss in eukaryotic genes remain poorly understood. Reconstruction of parsimonious scenarios of gene structure evolution in paralogous gene families in animals and plants revealed numerous gains and losses of introns. In all analyzed lineages, the number of acquired new introns was substantially greater than the number of lost ancestral introns. This trend held even for lineages in which vertical evolution of genes involved more intron losses than gains, suggesting that gene duplication boosts intron insertion. However, dating gene duplications and the associated intron gains and losses based on the molecular clock assumption showed that very few, if any, introns were gained during the last ∼100 million years of animal and plant evolution, in agreement with previous conclusions reached through analysis of orthologous gene sets. These results are generally compatible with the emerging notion of intensive insertion and loss of introns during transitional epochs in contrast to the relative quiet of the intervening evolutionary spans.
doi:10.1093/nar/gkh686
PMCID: PMC484173  PMID: 15254274

Results 1-11 (11)