Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Transcriptional Interference Promotes Rapid Expression Divergence of Drosophila Nested Genes 
Genome Biology and Evolution  2016;8(10):3149-3158.
Nested genes are the most common form of protein-coding overlap in eukaryotic genomes. Previous studies have shown that nested genes accumulate rapidly over evolutionary time, typically via the insertion of short young duplicate genes into long introns. However, the evolutionary relationship between nested genes remains unclear. Here, I compare RNA-seq expression profiles of nested, proximal intra-chromosomal, intermediate intra-chromosomal, distant intra-chromosomal, and inter-chromosomal gene pairs in two Drosophila species. I find that expression profiles of nested genes are more divergent than those of any other class of genes, supporting the hypothesis that concurrent expression of nested genes is deleterious due to transcriptional interference. Further analysis reveals that expression profiles of derived nested genes are more divergent than those of their ancestral un-nested orthologs, which are more divergent than those of un-nested genes with similar genomic features. Thus, gene expression divergence between nested genes is likely caused by selection against nesting of genes with insufficiently divergent expression profiles, as well as by continued expression divergence after nesting. Moreover, expression divergence and sequence evolutionary rates are elevated in young nested genes and reduced in old nested genes, indicating that a burst of rapid evolution occurs after nesting. Together, these findings suggest that similarity between expression profiles of nested genes is deleterious due to transcriptional interference, and that natural selection addresses this problem both by eradicating highly deleterious nestings and by enabling rapid expression divergence of surviving nested genes, thereby quickly limiting or abolishing transcriptional interference.
PMCID: PMC5174743  PMID: 27664180
nested genes; overlapping genes; transcriptional interference; gene expression evolution
2.  CDROM: Classification of Duplicate gene RetentiOn Mechanisms 
Gene duplication is a major source of new genes that is thought to play an important role in phenotypic innovation. Though several mechanisms have been hypothesized to drive the functional evolution and long-term retention of duplicate genes, there are currently no software tools for assessing their genome-wide contributions. Thus, the evolutionary mechanisms by which duplicate genes acquire novel functions remain unclear in a number of taxa.
In a recent study, researchers developed a phylogenetic approach that uses gene expression data from two species to classify the mechanisms underlying the retention of duplicate genes (Proc Natl Acad Sci USA 110:1740917414, 2013). We have implemented their classification method, as well as a more generalized method, in the R package CDROM, enabling users to apply these methods to their data and gain insights into the origin of novel biological functions after gene duplication. The CDROM R package, source code, and user manual for the R package are available for download from CRAN at Additionally, the CDROM R source code, user manual for running CDROM from the source code, and sample dataset used in this manuscript can be accessed at
CDROM is the first software package that enables genome-wide classification of the mechanisms driving the long-term retention of duplicate genes. It is user-friendly and flexible, providing researchers with a tool for studying the functional evolution of duplicate genes in a variety of taxa.
PMCID: PMC4832533  PMID: 27080514
Gene duplication; Neofunctionalization; Subfunctionalization; Gene expression evolution
3.  Rapid divergence and diversification of mammalian duplicate gene functions 
Gene duplication provides raw material for the evolution of functional innovation. We recently developed a phylogenetic method that classifies evolutionary processes driving the retention of duplicate genes by quantifying divergence between their spatial gene expression profiles and that of their single-copy orthologous gene in a closely related sister species.
Here, we apply our classification method to pairs of duplicate genes in eight mammalian genomes, using data from 11 tissues to construct spatial gene expression profiles. We find that young mammalian duplicates are often functionally conserved, and that expression divergence rapidly increases over evolutionary time. Moreover, expression divergence results in increased tissue specificity, with an overrepresentation of expression in male kidney, underrepresentation of expression in female liver, and strong underrepresentation of expression in testis. Thus, duplicate genes acquire a diversity of new tissue-specific functions outside of the testis, possibly contributing to the origin of a multitude of complex phenotypes during mammalian evolution.
Our findings reveal that mammalian duplicate genes are initially functionally conserved, and then undergo rapid functional divergence over evolutionary time, acquiring diverse tissue-specific biological roles. These observations are in stark contrast to the much faster expression divergence and acquisition of broad housekeeping roles we previously observed in Drosophila duplicate genes. Due to the smaller effective population sizes of mammals relative to Drosophila, these analyses implicate natural selection in the functional evolution of duplicate genes.
Electronic supplementary material
The online version of this article (doi:10.1186/s12862-015-0426-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4502564  PMID: 26173681
Gene duplication; Duplicate genes; Neofunctionalization; Subfunctionalization; Specialization
4.  Drosophila duplicate genes evolve new functions on the fly 
Fly  2014;8(2):91-94.
Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly—often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical “out-of-testes” origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.
PMCID: PMC4197021  PMID: 25483247
gene duplication; neofunctionalization; subfunctionalization; expression divergence
5.  Strong Epistatic Selection on the RNA Secondary Structure of HIV 
PLoS Pathogens  2014;10(9):e1004363.
A key question in evolutionary genomics is how populations navigate the adaptive landscape in the presence of epistasis, or interactions among loci. This problem can be directly addressed by studying the evolution of RNA secondary structures, for which there is constraint to maintain pairing between Watson-Crick (WC) sites. Replacement of a nucleotide at one site of a WC pair reduces fitness by disrupting binding, which can be restored via a compensatory replacement at the interacting site. Here, I present the first genome-scale analysis of epistasis on the RNA secondary structure of human immunodeficiency virus type 1 (HIV-1). Comparison of polymorphism frequencies at ancestrally conserved sites reveals that selection against replacements is ∼2.7 times stronger at WC than at non-WC sites, such that nearly 50% of constraint can be attributed to epistasis. However, almost all epistatic constraint is due to selection against conversions of WC pairs to unpaired (UP) nucleotides, whereas conversions to GU wobbles are only slightly deleterious. This disparity is also evident in pairs with second-site compensatory replacements; conversions from UP nucleotides to WC pairs increase median fitness by ∼4.2%, whereas conversions from GU wobbles to WC pairs only increase median fitness by ∼0.3%. Moreover, second-site replacements that convert UP nucleotides to GU wobbles also increase median fitness by ∼4%, indicating that such replacements are nearly as compensatory as those that restore WC pairing. Thus, WC peaks of the HIV-1 epistatic adaptive landscape are connected by high GU ridges, enabling the viral population to rapidly explore distant peaks without traversing deep UP valleys.
Author Summary
Epistasis is an evolutionary process in which the effect of a nucleotide at one site in the genome is dependent on the presence or absence of particular nucleotides at other sites in the genome. One of the simplest types of epistasis occurs between Watson-Crick (WC) nucleotides in RNA secondary structures, which are under constraint to maintain base-pairing. In this study, I examine the effects of mutations at WC sites in the RNA secondary structure of HIV-1. I show that while epistasis plays a major role in the evolution of the HIV-1 secondary structure, different types of mutations have variable effects on fitness. Therefore, by favoring certain mutational trajectories, HIV-1 can evolve rapidly despite strong epistatic constraint on its RNA secondary structure.
PMCID: PMC4161434  PMID: 25210786
6.  Sex-Biased Transcriptome Evolution in Drosophila 
Genome Biology and Evolution  2012;4(11):1189-1200.
Sex-biased genes are thought to drive phenotypic differences between males and females. The recent availability of high-throughput gene expression data for many related species has led to a burst of investigations into the genomic and evolutionary properties of sex-biased genes. In Drosophila, a number of studies have found that X chromosomes are deficient in male-biased genes (demasculinized) and enriched for female-biased genes (feminized) and that male-biased genes evolve faster than female-biased genes. However, studies have yielded vastly different conclusions regarding the numbers of sex-biased genes and forces shaping their evolution. Here, we use RNA-seq data from multiple tissues of Drosophila melanogaster and D. pseudoobscura, a species with a recently evolved X chromosome, to explore the evolution of sex-biased genes in Drosophila. First, we compare several independent metrics for classifying sex-biased genes and find that the overlap of genes identified by different metrics is small, particularly for female-biased genes. Second, we investigate genome-wide expression patterns and uncover evidence of demasculinization and feminization of both ancestral and new X chromosomes, demonstrating that gene content on sex chromosomes evolves rapidly. Third, we examine the evolutionary rates of sex-biased genes and show that male-biased genes evolve much faster than female-biased genes, which evolve at similar rates to unbiased genes. Analysis of gene expression among tissues reveals that this trend may be partially due to pleiotropic effects of female-biased genes, which limits their evolutionary potential. Thus, our findings illustrate the importance of accurately identifying sex-biased genes and provide insight into their evolutionary dynamics in Drosophila.
PMCID: PMC3514954  PMID: 23097318
7.  Nested genes and increasing organizational complexity of metazoan genomes 
Trends in Genetics  2008;24(10):475-478.
The most common form of protein-coding gene overlap in eukaryotes is a simple nested structure, whereby one gene is embedded in an intron of another. Analysis of nested protein-coding genes in vertebrates, fruit flies and nematodes revealed substantially higher rates of evolutionary gains than losses. The accumulation of nested gene structures could not be attributed to any obvious functional relationships between the genes involved and represents an increase of the organizational complexity of animal genomes via a neutral process.
PMCID: PMC3380635  PMID: 18774620
8.  A Strong Deletion Bias in Nonallelic Gene Conversion 
PLoS Genetics  2012;8(2):e1002508.
Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic) or paralogous (nonallelic) genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs.
Author Summary
Gene conversion is a process whereby a DNA sequence is copied from one segment of the genome (donor) to another (recipient), resulting in the replacement, insertion, or deletion of a DNA sequence in the recipient. This exchange is facilitated by the high sequence similarity of the two segments, which is due to their evolutionary relationship. Here, we study insertions and deletions produced by gene conversion between paralogs, segments related by DNA duplication events. By comparing paralog sequences in multiple species of fruit flies and primates, we find that deletions occur more than three times as frequently as insertions. We also discover that the rate of gene conversion between paralogs is quite high. The deletion bias and high rate of this process causes paralogs to shrink cooperatively and eventually be eliminated from the genome. Because of the abundance of paralogs in animal genomes, this phenomenon can lead to a significant reduction in genome size. Therefore, our finding enhances our understanding of the forces that lead to changes in genome size during evolution.
PMCID: PMC3280953  PMID: 22359514

Results 1-8 (8)