Search tips
Search criteria

Results 1-25 (28)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing 
Molecular bioSystems  2012;8(12):3142-3165.
The mode of action of the bacterial ter cluster and TelA genes, implicated in natural resistance to tellurite and other xenobiotic toxic compounds, pore-forming colicins and several bacteriophages has remained enigmatic for almost two decades. Using comparative genomics, sequence-profile searches and structural analysis we present evidence that the ter gene products and their functional partners constitute previously underappreciated, chemical stress response and anti-viral defense systems of bacteria. Based on contextual information from conserved gene neighborhoods and domain architectures, we show that the ter gene products and TelA lie at the center of membrane-linked metal recognition complexes with regulatory ramifications encompassing phosphorylation-dependent signal transduction, RNA-dependent regulation, biosynthesis of nucleoside-like metabolites and DNA processing. Our analysis suggests that the multiple metal-binding and non-binding TerD paralogs and TerC are likely to constitute a membrane-associated complex, which might also include TerB and TerY, and feature several, distinct metal-binding sites. Versions of the TerB domain might also bind small molecule ligands and link the TerD paralog-TerC complex to biosynthetic modules comprised of phosphoribosyltransferases (PRTases), ATP grasp amidoligases, TIM-barrel carbon-carbon lyases, and HAD phosphoesterases, which are predicted to synthesize novel nucleoside-like molecules. One of the PRTases is also likely to interact with RNA by means of its Pelota/Ribosomal protein L7AE-like domain. The von Willebrand factor A domain protein, TerY, is predicted to be part of a distinct phosphorylation switch, coupling a protein kinase and a PP2C phosphatase. We show, based on the evidence from numerous conserved gene neighborhoods and domain architectures, that both the TerB and TelA domains have been linked to diverse lipid-interaction domains, such as two novel PH-like and the Coq4 domains, in different bacteria and are likely to comprise membrane-associated sensory complexes that might additionally contain periplasmic binding-protein-II and OmpA domains. The TerD and TerB domains and the TerY-associated phosphorylation system are also functionally linked to distinct DNA-processing complexes, which contain proteins with SWI2/SNF2 and RecQ-like helicases, multiple AAA+ ATPases, McrC-N-terminal domain proteins, several restriction endonuclease fold DNases, DNA-binding domains and a type-VII/Esx-like system, which is at the center of a predicted DNA transfer apparatus. These DNA-processing modules and associated genes are predicted to be involved in restriction or suicidal action in response to phages and possibly repairing xenobiotic-induced DNA damage. In some eukaryotes, certain components of the ter system appear to have recruited to function in conjunction with the ubiquitin system and calcium-signaling pathways.
PMCID: PMC4104200  PMID: 23044854
2.  CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems 
Frontiers in Genetics  2014;5:102.
CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold). Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and “effector” domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death.
PMCID: PMC4012209  PMID: 24817877
CRISPR; Rossmann fold; beta barrel; DNA-binding proteins; phage defense
3.  Radiation-Induced Cellular and Molecular Alterations in Asexual Intraerythrocytic Plasmodium falciparum 
The Journal of Infectious Diseases  2012;207(1):164-174.
Background. γ-irradiation is commonly used to create attenuation in Plasmodium parasites. However, there are no systematic studies on the survival, reversion of virulence, and molecular basis for γ-radiation–induced cell death in malaria parasites.
Methods. The effect of γ-irradiation on the growth of asexual Plasmodium falciparum was studied in erythrocyte cultures. Cellular and ultrastructural changes within the parasite were studied by fluorescence and electron microscopy, and genome-wide transcriptional profiling was performed to identify parasite biomarkers of attenuation and cell death.
Results. γ-radiation induced the death of P. falciparum in a dose-dependent manner. These parasites had defective mitosis, sparse cytoplasm, fewer ribosomes, disorganized and clumped organelles, and large vacuoles—observations consistent with “distressed” or dying parasites. A total of 185 parasite genes were transcriptionally altered in response to γ-irradiation (45.9% upregulated, 54.1% downregulated). Loss of parasite survival was correlated with the downregulation of genes encoding translation factors and with upregulation of genes associated with messenger RNA–sequestering stress granules. Genes pertaining to cell-surface interactions, host-cell remodeling, and secreted proteins were also altered.
Conclusions. These studies provide a framework to assess the safety of γ-irradiation attenuation and promising targets for genetic deletion to produce whole parasite-based attenuated vaccines.
PMCID: PMC3523796  PMID: 23100570
NOD2; IL-17; Th17; T lymphocytes; ocular toxoplasmosis; Toxoplasma gondii
4.  Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing 
Biology Direct  2013;8:15.
The major role of enzymatic toxins that target nucleic acids in biological conflicts at all levels has become increasingly apparent thanks in large part to the advances of comparative genomics. Typically, toxins evolve rapidly hampering the identification of these proteins by sequence analysis. Here we analyze an unexpectedly widespread superfamily of toxin domains most of which possess RNase activity.
The HEPN superfamily is comprised of all α-helical domains that were first identified as being associated with DNA polymerase β-type nucleotidyltransferases in prokaryotes and animal Sacsin proteins. Using sensitive sequence and structure comparison methods, we vastly extend the HEPN superfamily by identifying numerous novel families and by detecting diverged HEPN domains in several known protein families. The new HEPN families include the RNase LS and LsoA catalytic domains, KEN domains (e.g. RNaseL and Ire1) and the RNase domains of RloC and PrrC. The majority of HEPN domains contain conserved motifs that constitute a metal-independent endoRNase active site. Some HEPN domains lacking this motif probably function as non-catalytic RNA-binding domains, such as in the case of the mannitol repressor MtlR. Our analysis shows that HEPN domains function as toxins that are shared by numerous systems implicated in intra-genomic, inter-genomic and intra-organismal conflicts across the three domains of cellular life. In prokaryotes HEPN domains are essential components of numerous toxin-antitoxin (TA) and abortive infection (Abi) systems and in addition are tightly associated with many restriction-modification (R-M) and CRISPR-Cas systems, and occasionally with other defense systems such as Pgl and Ter. We present evidence of multiple modes of action of HEPN domains in these systems, which include direct attack on viral RNAs (e.g. LsoA and RNase LS) in conjunction with other RNase domains (e.g. a novel RNase H fold domain, NamA), suicidal or dormancy-inducing attack on self RNAs (RM systems and possibly CRISPR-Cas systems), and suicidal attack coupled with direct interaction with phage components (Abi systems). These findings are compatible with the hypothesis on coupling of pathogen-targeting (immunity) and self-directed (programmed cell death and dormancy induction) responses in the evolution of robust antiviral strategies. We propose that altruistic cell suicide mediated by HEPN domains and other functionally similar RNases was essential for the evolution of kin and group selection and cell cooperation. HEPN domains were repeatedly acquired by eukaryotes and incorporated into several core functions such as endonucleolytic processing of the 5.8S-25S/28S rRNA precursor (Las1), a novel ER membrane-associated RNA degradation system (C6orf70), sensing of unprocessed transcripts at the nuclear periphery (Swt1). Multiple lines of evidence suggest that, similar to prokaryotes, HEPN proteins were recruited to antiviral, antitransposon, apoptotic systems or RNA-level response to unfolded proteins (Sacsin and KEN domains) in several groups of eukaryotes.
Extensive sequence and structure comparisons reveal unexpectedly broad presence of the HEPN domain in an enormous variety of defense and stress response systems across the tree of life. In addition, HEPN domains have been recruited to perform essential functions, in particular in eukaryotic rRNA processing. These findings are expected to stimulate experiments that could shed light on diverse cellular processes across the three domains of life.
This article was reviewed by Martijn Huynen, Igor Zhulin and Nick Grishin
PMCID: PMC3710099  PMID: 23768067
5.  Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes 
Biology Direct  2012;7:40.
The virus-host arms race is a major theater for evolutionary innovation. Archaea and bacteria have evolved diverse, elaborate antivirus defense systems that function on two general principles: i) immune systems that discriminate self DNA from nonself DNA and specifically destroy the foreign, in particular viral, genomes, whereas the host genome is protected, or ii) programmed cell suicide or dormancy induced by infection.
Presentation of the hypothesis
Almost all genomic loci encoding immunity systems such as CRISPR-Cas, restriction-modification and DNA phosphorothioation also encompass suicide genes, in particular those encoding known and predicted toxin nucleases, which do not appear to be directly involved in immunity. In contrast, the immunity systems do not appear to encode antitoxins found in typical toxin-antitoxin systems. This raises the possibility that components of the immunity system themselves act as reversible inhibitors of the associated toxin proteins or domains as has been demonstrated for the Escherichia coli anticodon nuclease PrrC that interacts with the PrrI restriction-modification system. We hypothesize that coupling of diverse immunity and suicide/dormancy systems in prokaryotes evolved under selective pressure to provide robustness to the antivirus response. We further propose that the involvement of suicide/dormancy systems in the coupled antivirus response could take two distinct forms:
1) induction of a dormancy-like state in the infected cell to ‘buy time’ for activation of adaptive immunity; 2) suicide or dormancy as the final recourse to prevent viral spread triggered by the failure of immunity.
Testing the hypothesis
This hypothesis entails many experimentally testable predictions. Specifically, we predict that Cas2 protein present in all cas operons is a mRNA-cleaving nuclease (interferase) that might be activated at an early stage of virus infection to enable incorporation of virus-specific spacers into the CRISPR locus or to trigger cell suicide when the immune function of CRISPR-Cas systems fails. Similarly, toxin-like activity is predicted for components of numerous other defense loci.
Implications of the hypothesis
The hypothesis implies that antivirus response in prokaryotes involves key decision-making steps at which the cell chooses the path to follow by sensing the course of virus infection.
This article was reviewed by Arcady Mushegian, Etienne Joly and Nick Grishin. For complete reviews, go to the Reviewers’ reports section.
PMCID: PMC3506569  PMID: 23151069
6.  Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system 
Gene  2010;475(2):63-78.
Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein signaling systems in several poorly studied eukaryotic lineages such as the parabasalids, heteroloboseans and stramenopiles. This indicated that the Gα subunit is likely to have separated from the ARF-like GTPases prior to the last eukaryotic common ancestor. We systematically identified the structure and sequence features associated with this divergence and found that most of the neomorphic positions in Gα form a ring of residues centered on the nucleotide binding site, several of which are likely to be critical for interactions with the RGS domain for its GAP function. We also present evidence that in some of the potentially early branching eukaryotic lineages, like Trichomonas, Gα is likely to function independently of the Gβγ subunits. We were able to identify previously unknown Gγ subunits in Naegleria, suggesting that the trimeric version was already present by the time of the divergence of the heteroloboseans from the remaining eukaryotes. Evolution of Gα subunits is dominated by several independent lineage-specific expansions (LSEs). In most of these cases there are concomitant, independent LSEs of RGS proteins along with an extraordinary diversification of their domain architectures. The diversity of RGS domains from Naegleria in particular, which has the largest complement of Gα and RGS proteins for any eukaryote, provides new insights into RGS function and evolution. We uncovered a new class of soluble ligand receptors of bacterial origin with RGS domains and an extraordinary diversity of membrane-linked, redox-associated, adhesion-dependent and small molecule-induced G-protein signaling networks that evolved in early-branching eukaryotes, independently of parallel systems in animals. Furthermore, this newly characterized diversity of RGS domains helps in defining their ancestral conserved interfaces with Gα and also those interfaces that are prone to extensive lineage-specific diversification and are thereby responsible for selectivity in Gα-RGS interactions. Several mushrooms show LSEs of Gαs but not of RGS proteins pointing to the probable differentiation of Gαs in conjunction with mating-type diversity. When combined with the characterization of the 7TM receptors (GPCRs), it becomes apparent that, through much of eukaryotic evolution, cells contained both 7TM receptors that acted as GEFs and those as GAPs (with C-terminal RGS domains) for Gαs. Only in some lineages like animals and stramenopiles the 7TM receptors were restricted to GEF only roles, probably due to selection imposed by the rate-constants of the Gαs that underwent lineage-specific expansion in them. In the alveolate lineage the 7TM receptors occur independently of heterotrimeric G-proteins, suggesting the prevalence of G-protein-independent signaling in these organisms.
PMCID: PMC3396428  PMID: 21182906
7.  Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics 
Biology Direct  2012;7:18.
Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis.
Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized “Photorhabdus virulence cassettes (PVC)”, PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative ‘cheating’ in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses.
Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
This article was reviewed by AM, FE and IZ.
PMCID: PMC3482391  PMID: 22731697
8.  Gene flow and biological conflict systems in the origin and evolution of eukaryotes 
The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.
PMCID: PMC3417536  PMID: 22919680
antibiotics; biological conflict; endosymbiosis; immunity proteins; restriction-modfication; RNAi; selfish elements; toxins
9.  Molecular Correlates of Experimental Cerebral Malaria Detectable in Whole Blood ▿ †  
Infection and Immunity  2010;79(3):1244-1253.
Cerebral malaria (CM) is a primary cause of deaths caused by Plasmodium falciparum in young children in sub-Saharan Africa. Laboratory tests based on early detection of host biomarkers in patient blood would help in the prognosis and differential diagnosis of CM. Using the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM), we have identified over 300 putative diagnostic biomarkers of ECM in the circulation by comparing the whole-blood transcriptional profiles of resistant mice (BALB/c) to those of two susceptible strains (C57BL/6 and CBA/CaJ). Our results suggest that the transcriptional profile of whole blood captures the molecular and immunological events associated with the pathogenesis of disease. We find that during ECM, erythropoiesis is dysfunctional, thrombocytopenia is evident, and glycosylation of cell surface components may be modified. Furthermore, analysis of immunity-related genes suggests that slightly distinct mechanisms of immunopathogenesis may operate in susceptible C57BL/6 and CBA/CaJ mice. Furthermore, our data set has allowed us to create a molecular signature of ECM composed of a subset of circulatory markers. Complement component C1q, β-chain, nonspecific cytotoxic cell receptor protein 1, prostate stem cell antigen, DnaJC, member 15, glutathione S-transferase omega-1, and thymidine kinase 1 were overexpressed in blood during the symptomatic phase of ECM, as measured by quantitative real-time PCR analysis. These studies provide the first host transcriptome database that is uniquely altered during the pathogenesis of ECM in blood. A subset of these mediators of ECM warrant validation in P. falciparum-infected young African children as diagnostic markers of CM.
PMCID: PMC3067492  PMID: 21149594
10.  Presence of a classical RRM-fold palm domain in Thg1-type 3'- 5'nucleic acid polymerases and the origin of the GGDEF and CRISPR polymerase domains 
Biology Direct  2010;5:43.
Almost all known nucleic acid polymerases catalyze 5'-3' polymerization by mediating the attack on an incoming nucleotide 5' triphosphate by the 3'OH from the growing polynucleotide chain in a template dependent or independent manner. The only known exception to this rule is the Thg1 RNA polymerase that catalyzes 3'-5' polymerization in vitro and also in vivo as a part of the maturation process of histidinyl tRNA. While the initial reaction catalyzed by Thg1 has been compared to adenylation catalyzed by the aminoacyl tRNA synthetases, the evolutionary relationships of Thg1 and the actual nature of the polymerase reaction catalyzed by it remain unclear.
Using sensitive profile-profile comparison and structure prediction methods we show that the catalytic domain Thg1 contains a RRM (ferredoxin) fold palm domain, just like the viral RNA-dependent RNA polymerases, reverse transcriptases, family A and B DNA polymerases, adenylyl cyclases, diguanylate cyclases (GGDEF domain) and the predicted polymerase of the CRISPR system. We show just as in these polymerases, Thg1 possesses an active site with three acidic residues that chelate Mg++ cations. Based on this we predict that Thg1 catalyzes polymerization similarly to the 5'-3' polymerases, but uses the incoming 3' OH to attack the 5' triphosphate generated at the end of the elongating polynucleotide. In addition we identify a distinct set of residues unique to Thg1 that we predict as comprising a second active site, which catalyzes the initial adenylation reaction to prime 3'-5' polymerization. Based on contextual information from conserved gene neighborhoods we show that Thg1 might function in conjunction with a polynucleotide kinase that generates an initial 5' phosphate substrate for it at the end of a RNA molecule. In addition to histidinyl tRNA maturation, Thg1 might have other RNA repair roles in representatives from all the three superkingdoms of life as well as certain large DNA viruses. We also present evidence that among the polymerase-like domains Thg1 is most closely related to the catalytic domains of the GGDEF and CRISPR polymerase proteins.
Based on this relationship and the phyletic patterns of these enzymes we infer that the Thg1 protein is likely to represent an archaeo-eukaryotic branch of the same clade of proteins that gave rise to the mobile CRISPR polymerases and in bacteria spawned the GGDEF domains. Thg1 is likely to be close to the ancestral version of this family of enzymes that might have played a role in RNA repair in the last universal common ancestor.
This article was reviewed by S. Balaji and V.V. Dolja.
PMCID: PMC2904730  PMID: 20591188
11.  Apprehending multicellularity: regulatory networks, genomics and evolution 
The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the “network view” of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and non-protein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch sub-network, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct.
PMCID: PMC2754411  PMID: 19530132
12.  OST-HTH: a novel predicted RNA-binding domain 
Biology Direct  2010;5:13.
The mechanism by which the arthropod Oskar and vertebrate TDRD5/TDRD7 proteins nucleate or organize structurally related ribonucleoprotein (RNP) complexes, the polar granule and nuage, is poorly understood. Using sequence profile searches we identify a novel domain in these proteins that is widely conserved across eukaryotes and bacteria.
Using contextual information from domain architectures, sequence-structure superpositions and available functional information we predict that this domain is likely to adopt the winged helix-turn-helix fold and bind RNA with a potential specificity for dsRNA. We show that in eukaryotes this domain is often combined in the same polypeptide with protein-protein- or lipid- interaction domains that might play a role in anchoring these proteins to specific cytoskeletal structures.
Thus, proteins with this domain might have a key role in the recognition and localization of dsRNA, including miRNAs, rasiRNAs and piRNAs hybridized to their targets. In other cases, this domain is fused to ubiquitin-binding, E3 ligase and ubiquitin-like domains indicating a previously under-appreciated role for ubiquitination in regulating the assembly and stability of nuage-like RNP complexes. Both bacteria and eukaryotes encode a conserved family of proteins that combines this predicted RNA-binding domain with a previously uncharacterized domain (DUF88). We present evidence that it is an RNAse belonging to the superfamily that includes the 5'->3' nucleases, PIN and NYN domains and might be recruited to degrade certain RNAs.
This article was reviewed by Sandor Pongor and Arcady Mushegian.
PMCID: PMC2848206  PMID: 20302647
13.  Novel eukaryotic enzymes modifying cell-surface biopolymers 
Biology Direct  2010;5:1.
Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins.
Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern.
We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides.
This article was reviewed by Gaspar Jekely and Frank Eisenhaber
PMCID: PMC2824669  PMID: 20056006
14.  Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice 
PLoS ONE  2009;4(8):e6793.
An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62L− differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal.
PMCID: PMC2728507  PMID: 19710907
15.  Host Biomarkers and Biological Pathways That Are Associated with the Expression of Experimental Cerebral Malaria in Mice▿ †  
Infection and Immunity  2008;76(10):4518-4529.
Cerebral malaria (CM) is a primary cause of malaria-associated deaths among young African children. Yet no diagnostic tools are available that could be used to predict which of the children infected with Plasmodium falciparum malaria will progress to CM. We used the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM) and high-density oligonucleotide microarray analyses to identify host molecules that are strongly associated with the clinical symptoms of ECM. Comparative expression analyses were performed with C57BL/6 mice, which have an ECM-susceptible phenotype, and with mice that have ECM-resistant phenotypes: CD8 knockout and perforin knockout mice on the C57BL/6 background and BALB/c mice. These analyses allowed the identification of more than 200 host molecules (a majority of which had not been identified previously) with altered expression patterns in the brain that are strongly associated with the manifestation of ECM. Among these host molecules, brain samples from mice with ECM expressed significantly higher levels of p21, metallothionein, and hemoglobin α1 proteins by Western blot analysis than mice unaffected by ECM, suggesting the possible utility of these molecules as prognostic biomarkers of CM in humans. We suggest that the higher expression of hemoglobin α1 in the brain may be associated with ECM and could be a source of excess heme, a molecule that is considered to trigger the pathogenesis of CM. Our studies greatly enhance the repertoire of host molecules for use as diagnostics and novel therapeutics in CM.
PMCID: PMC2546852  PMID: 18644885
16.  AMIN domains have a predicted role in localization of diverse periplasmic protein complexes 
Bioinformatics  2008;24(21):2423-2426.
We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2572700  PMID: 18723522
17.  Analysis of DBC1 and its homologs suggests a potential mechanism for regulation of Sirtuin domain deacetylases by NAD metabolites 
Cell cycle (Georgetown, Tex.)  2008;7(10):1467-1472.
Deleted in Breast Cancer-1 (DBC1) and its paralog CARP-1 are large multi-domain proteins, with a nuclear or perinuclear localization, and a role in promoting apoptosis upon processing by caspases. Recent studies on human DBC1 show that it is a specific inhibitor of the sirtuin-type deacetylase, Sirt1, which deacetylates histones and p53. Using sensitive sequence profile searches and HMM-HMM comparisons we show that the central conserved globular domain present in the DBC1 and it homologs from diverse eukaryotes is a catalytically inactive version of the Nudix hydrolase (MutT) domain. Given that Nudix domains are known to bind nucleoside diphosphate sugars and NAD, we predict that this domain in DBC1 and its homologs binds NAD metabolites such as ADP-ribose. Hence, we propose that DBC1 and its homologs are likely to regulate the activity of SIRT1 or related deacetylases by sensing the soluble products or substrates of the NAD-dependent deacetylation reaction. The complex domain architectures of the members of the DBC1 family, which include fusions to the RNA-binding S1-like domain, the DNA-binding SAP domain and EF-hand domains, suggest that they are likely to function as integrators of distinct regulatory signals including chromatin protein modification, soluble compounds in NAD metabolism, apoptotic stimuli and RNA recognition.
PMCID: PMC2423810  PMID: 18418069
18.  Molecular Factors and Biochemical Pathways Induced by Febrile Temperature in Intraerythrocytic Plasmodium falciparum Parasites▿ †  
Infection and Immunity  2007;75(4):2012-2025.
Intermittent episodes of febrile illness are the most benign and recognized symptom of infection with malaria parasites, although the effects on parasite survival and virulence remain unclear. In this study, we identified the molecular factors altered in response to febrile temperature by measuring differential expression levels of individual genes using high-density oligonucleotide microarray technology and by performing biological assays in asexual-stage Plasmodium falciparum parasite cultures incubated at 37°C and 41°C (an elevated temperature that is equivalent to malaria-induced febrile illness in the host). Elevated temperature had a profound influence on expression of individual genes; 336 of approximately 5,300 genes (6.3% of the genome) had altered expression profiles. Of these, 163 genes (49%) were upregulated by twofold or greater, and 173 genes (51%) were downregulated by twofold or greater. In-depth sensitive sequence profile analysis revealed that febrile temperature-induced responses caused significant alterations in the major parasite biologic networks and pathways and that these changes are well coordinated and intricately linked. One of the most notable transcriptional changes occurs in genes encoding proteins containing the predicted Pexel motifs that are exported into the host cytoplasm or inserted into the host cell membrane and are likely to be associated with erythrocyte remodeling and parasite sequestration functions. Using our sensitive computational analysis, we were also able to assign biochemical or biologic functional predictions for at least 100 distinct genes previously annotated as “hypothetical.” We find that cultivation of P. falciparum parasites at 41°C leads to parasite death in a time-dependent manner. The presence of the “crisis forms” and the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling-positive parasites following heat treatment strongly support the notion that an apoptosis-like cell death mechanism might be induced in response to febrile temperatures. These studies enhance the possibility of designing vaccines and drugs on the basis of disruption in molecules and pathways of parasite survival and virulence activated in response to febrile temperatures.
PMCID: PMC1865691  PMID: 17283083
19.  The signaling helix: a common functional theme in diverse signaling proteins 
Biology Direct  2006;1:25.
The mechanism by which the signals are transmitted between receptor and effector domains in multi-domain signaling proteins is poorly understood.
Using sensitive sequence analysis methods we identify a conserved helical segment of around 40 residues in a wide range of signaling proteins, including numerous sensor histidine kinases such as Sln1p, and receptor guanylyl cyclases such as the atrial natriuretic peptide receptor and nitric oxide receptors. We term this helical segment the signaling (S)-helix and present evidence that it forms a novel parallel coiled-coil element, distinct from previously known helical segments in signaling proteins, such as the Dimerization-Histidine phosphotransfer module of histidine kinases, the intra-cellular domains of the chemotaxis receptors, inter-GAF domain helical linkers and the α-helical HAMP module. Analysis of domain architectures allowed us to reconstruct the domain-neighborhood graph for the S-helix, which showed that the S-helix almost always occurs between two signaling domains. Several striking patterns in the domain neighborhood of the S-helix also became evident from the graph. It most often separates diverse N-terminal sensory domains from various C-terminal catalytic signaling domains such as histidine kinases, cNMP cyclase, PP2C phosphatases, NtrC-like AAA+ ATPases and diguanylate cyclases. It might also occur between two sensory domains such as PAS domains and occasionally between a DNA-binding HTH domain and a sensory domain. The sequence conservation pattern of the S-helix revealed the presence of a unique constellation of polar residues in the dimer-interface positions within the central heptad of the coiled-coil formed by the S-helix.
Combining these observations with previously reported mutagenesis studies on different S-helix-containing proteins we suggest that it functions as a switch that prevents constitutive activation of linked downstream signaling domains. However, upon occurrence of specific conformational changes due to binding of ligand or other sensory inputs in a linked upstream domain it transmits the signal to the downstream domain. Thus, the S-helix represents one of the most prevalent functional themes involved in the flow of signals between modules in diverse prokaryote-type multi-domain signaling proteins.
This article was reviewed by Frank Eisenhaber, Arcady Mushegian and Sandor Pongor.
PMCID: PMC1592074  PMID: 16953892
20.  Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability 
BMC Genomics  2004;5:45.
The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism.
Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases.
Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability.
PMCID: PMC503384  PMID: 15257761
21.  New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system 
Genome Biology  2003;4(12):R81.
Sequence profile analysis of the RelE- and ParE-type post-segregational cell killing (PSK) toxins from diverse bacteria and archaea has unified these proteins into a single superfamily. Further comparative analysis suggests that the core of the eukaryotic nonsense-mediated RNA decay system has probably evolved from a PSK-related system.
Several prokaryotic plasmids maintain themselves in their hosts by means of diverse post-segregational cell killing systems. Recent findings suggest that chromosomally encoded copies of toxins and antitoxins of post-segregational cell killing systems - such as the RelE system - might function as regulatory switches under stress conditions. The RelE toxin cleaves ribosome-associated transcripts, whereas another post-segregational cell killing toxin, ParE, functions as a gyrase inhibitor.
Using sequence profile analysis we were able unify the RelE- and ParE-type toxins with several families of small, uncharacterized proteins from diverse bacteria and archaea into a single superfamily. Gene neighborhood analysis showed that the majority of these proteins were encoded by genes in characteristic neighborhoods, in which genes encoding toxins always co-occurred with genes encoding transcription factors that are also antitoxins. The transcription factors accompanying the RelE/ParE superfamily may belong to unrelated or distantly related superfamilies, however. We used this conserved neighborhood template to transitively search genomes and identify novel post-segregational cell killing-related systems. One of these novel systems, observed in several prokaryotes, contained a predicted toxin with a PilT-N terminal (PIN) domain, which is also found in proteins of the eukaryotic nonsense-mediated RNA decay system. These searches also identified novel transcription factors (antitoxins) in post-segregational cell killing systems. Furthermore, the toxin Doc defines a potential metalloenzyme superfamily, with novel representatives in bacteria, archaea and eukaryotes, that probably acts on nucleic acids.
The tightly maintained gene neighborhoods of post-segregational cell killing-related systems appear to have evolved by in situ displacement of genes for toxins or antitoxins by functionally equivalent but evolutionarily unrelated genes. We predict that the novel post-segregational cell killing-related systems containing a PilT-N terminal domain toxin and the eukaryotic nonsense-mediated RNA decay system are likely to function via a common mechanism, in which the PilT-N terminal domain cleaves ribosome-associated transcripts. The core of the eukaryotic nonsense-mediated RNA decay system has probably evolved from a post-segregational cell killing-related system.
PMCID: PMC329420  PMID: 14659018
22.  The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism 
Genome Biology  2003;4(10):R64.
The Alba superfamily of chromosomal proteins appear to have originated as RNA-binding proteins and to have been recruited to chromosomes possibly only within the crenarchaeal lineage.
There is considerable heterogeneity in the phyletic patterns of major chromosomal DNA-binding proteins in archaea. Alba is a well-characterized chromosomal protein from the crenarchaeal genus Sulfolobus. While Alba has been detected in most archaea and some eukaryotic taxa, its exact functions in these taxa are not clear. Here we use comparative genomics and sequence profile analysis to predict potential alternative functions of the Alba proteins.
Using sequence-profile searches, we were able to unify the Alba proteins with RNase P/MRP subunit Rpp20/Pop7, human RNase P subunit Rpp25, and the ciliate Mdp2 protein, which is implicated in macronuclear development. The Alba superfamily contains two eukaryote-specific families and one archaeal family. We present different lines of evidence to show that both eukaryotic families perform functions related to RNA metabolism. Several members of one of the eukaryotic families, typified by Mdp2, are combined in the same polypeptide with RNA-binding RGG repeats. We also investigated the relationships of the unified Alba superfamily within the ancient RNA-binding IF3-C fold, and show that it is most closely related to other RNA-binding members of this fold, such as the YhbY and IF3-C superfamilies. Based on phyletic patterns and the principle of phylogenetic bracketing, we predict that at least some of the archaeal members may also possess a role in RNA metabolism.
The Alba superfamily proteins appear to have originated as RNA-binding proteins which formed various ribonucleoprotein complexes, probably including RNase P. It was recruited as a chromosomal protein possibly only within the crenarchaeal lineage. The evolutionary connections reported here suggest how a diversity of functions based on a common biochemical basis emerged in proteins of the Alba superfamily.
PMCID: PMC328453  PMID: 14519199
23.  Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria 
BMC Genomics  2003;4:34.
A great diversity of multi-pass membrane receptors, typically with 7 transmembrane (TM) helices, is observed in the eukaryote crown group. So far, they are relatively rare in the prokaryotes, and are restricted to the well-characterized sensory rhodopsins of various phototropic prokaryotes.
Utilizing the currently available wealth of prokaryotic genomic sequences, we set up a computational screen to identify putative 7 (TM) and other multi-pass membrane receptors in prokaryotes. As a result of this procedure we were able to recover two widespread families of 7 TM receptors in bacteria that are distantly related to the eukaryotic 7 TM receptors and prokaryotic rhodopsins. Using sequence profile analysis, we were able to establish that the first members of these receptor families contain one of two distinct N-terminal extracellular globular domains, which are predicted to bind ligands such as carbohydrates. In their intracellular portions they contain fusions to a variety of signaling domains, which suggest that they are likely to transduce signals via cyclic AMP, cyclic diguanylate, histidine phosphorylation, dephosphorylation, and through direct interactions with DNA. The second family of bacterial 7 TM receptors possesses an α-helical extracellular domain, and is predicted to transduce a signal via an intracellular HD hydrolase domain. Based on comparative analysis of gene neighborhoods, this receptor is predicted to function as a regulator of the diacylglycerol-kinase-dependent glycerolipid pathway. Additionally, our procedure also recovered other types of putative prokaryotic multi-pass membrane associated receptor domains. Of these, we characterized two widespread, evolutionarily mobile multi-TM domains that are fused to a variety of C-terminal intracellular signaling domains. One of these typified by the Gram-positive LytS protein is predicted to be a potential sensor of murein derivatives, whereas the other one typified by the Escherichia coli UhpB protein is predicted to function as sensor of conformational changes occurring in associated membrane proteins
We present evidence for considerable variety in the types of uncharacterized surface receptors in bacteria, and reconstruct the evolutionary processes that model their diversity. The identification of novel receptor families in prokaryotes is likely to aid in the experimental analysis of signal transduction and environmental responses of several bacteria, including pathogens such as Leptospira, Treponema, Corynebacterium, Coxiella, Bacillus anthracis and Cytophaga.
PMCID: PMC212514  PMID: 12914674
24.  Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes 
Genome Biology  2003;4(2):R11.
Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them.
Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-γ-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages.
Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them.
Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.
PMCID: PMC151301  PMID: 12620121
25.  Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins 
BMC Genomics  2003;4:5.
Soluble guanylyl cyclases (SGCs) are dimeric enzymes that transduce signals downstream of nitric oxide (NO) in animals. They sense NO by means of a heme moiety that is bound to their N-terminal extensions.
Using sequence profile searches we show that the N-terminal extensions of the SGCs contain two globular domains. The first of these, the HNOB (Heme NO Binding) domain, is a predominantly α-helical domain and binds heme via a covalent linkage to histidine. Versions lacking this conserved histidine and are likely to interact with heme non-covalently. We detected HNOB domains in several bacterial lineages, where they occur fused to methyl accepting domains of chemotaxis receptors or as standalone proteins. The standalone forms are encoded by predicted operons that also contain genes for two component signaling systems and GGDEF-type nucleotide cyclases. The second domain, the HNOB associated (HNOBA) domain occurs between the HNOB and the cyclase domains in the animal SGCs. The HNOBA domain is also detected in bacteria and is always encoded by a gene, which occurs in the neighborhood of a gene for a HNOB domain.
The HNOB domain is predicted to function as a heme-dependent sensor for gaseous ligands, and transduce diverse downstream signals, in both bacteria and animals. The HNOBA domain functionally interacts with the HNOB domain, and possibly binds a ligand, either in cooperation, or independently of the latter domain. Phyletic profiles and phylogenetic analysis suggest that the HNOB and HNOBA domains were acquired by the animal lineage via lateral transfer from a bacterial source.
PMCID: PMC149354  PMID: 12590654

Results 1-25 (28)