Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Globins Synthesize the Second Messenger c-di-GMP in Bacteria 
Journal of molecular biology  2009;388(2):262-270.
Globin-coupled sensors (GCS) are heme-binding signal transducers in Bacteria and Archaea where an N-terminal globin controls the activity of a variable C-terminal domain. Here we report that BpeGReg, a globin-coupled diguanylate cyclase (GCDC) from the whooping-cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3’–5’)-cyclic diguanosine monophosphate (c-di-GMP) upon oxygen binding. Expression of BpeGReg in Salmonella typhimurium enhances biofilm formation, while knockout of the BpeGReg gene of B. pertussis results in decreased biofilm formation. These results represent the first identification of a gaseous ligand for any diguanylate cyclase and provide definitive experimental evidence that a globin-coupled sensor regulates c-di-GMP synthesis and biofilm formation. We propose that the synthesis of c-di-GMP by globin sensors is a widespread phenomenon in bacteria.
PMCID: PMC4301737  PMID: 19285985
globin; oxygen sensor; c-di-GMP; diguanylate cyclase; biofilm
2.  Xylanase Superproducer: Genome Sequence of a Compost-Loving Thermophilic Fungus, Thermomyces lanuginosus Strain SSBP 
Genome Announcements  2013;1(3):e00388-13.
We report here the draft genome sequence of Thermomyces lanuginosus strain SSBP, which was isolated from soil in South Africa. This fungus produces the largest amount of xylanase ever reported in the literature.
PMCID: PMC3707600  PMID: 23788551
3.  Draft genome sequence of the rubber tree Hevea brasiliensis 
BMC Genomics  2013;14:75.
Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.
Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified.
The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.
PMCID: PMC3575267  PMID: 23375136
Hevea brasiliensis; Euphorbiaceae; Natural rubber; Genome
4.  The Genomic Blueprint of Salmonella enterica subspecies enterica serovar Typhi P-stx-12 
Standards in Genomic Sciences  2013;7(3):483-496.
Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different.
PMCID: PMC3764930  PMID: 24019994
Enterobacteriaceae; Salmonella; Typhi; Gram-negative; host-specific; pathogen; Typhoid Fever
5.  Complete Genome Sequence of Salmonella enterica subsp. enterica Serovar Typhi P-stx-12 
Journal of Bacteriology  2012;194(8):2115-2116.
We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.
PMCID: PMC3318496  PMID: 22461552
6.  Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina 
BMC Genomics  2012;13:493.
Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant.
We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin.
The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.
PMCID: PMC3477038  PMID: 22992219
Genome sequencing; Phytopathogens; Charcoal rot; Phenotypic microarray
7.  Complete Genome Sequence of the Thermophilic Bacterium Thermus sp. Strain CCB_US3_UF1 
Journal of Bacteriology  2012;194(5):1240.
Thermus sp. strain CCB_US3_UF1, a thermophilic bacterium, has been isolated from a hot spring in Malaysia. Here, we present the complete genome sequence of Thermus sp. CCB_US3_UF1.
PMCID: PMC3294796  PMID: 22328745
8.  Complete Genome Sequence of the Thermophilic Bacterium Geobacillus thermoleovorans CCB_US3_UF5 
Journal of Bacteriology  2012;194(5):1239.
Geobacillus thermoleovorans CCB_US3_UF5 is a thermophilic bacterium isolated from a hot spring in Malaysia. Here, we report the complete genome of G. thermoleovorans CCB_US3_UF5, which shows high similarity to the genome of Geobacillus kaustophilus HTA 426 in terms of synteny and orthologous genes.
PMCID: PMC3294819  PMID: 22328744
9.  Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium 
Standards in Genomic Sciences  2012;6(1):84-93.
Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as ‘ixotrophy’. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date.
PMCID: PMC3368406  PMID: 22675601
Saprospira grandis; predatory; RsbR; gliding motility; globin-coupled sensors; rhapidosomes
10.  Complete Genome Sequence of Beijerinckia indica subsp. indica▿  
Journal of Bacteriology  2010;192(17):4532-4533.
Beijerinckia indica subsp. indica is an aerobic, acidophilic, exopolysaccharide-producing, N2-fixing soil bacterium. It is a generalist chemoorganotroph that is phylogenetically closely related to facultative and obligate methanotrophs of the genera Methylocella and Methylocapsa. Here we report the full genome sequence of this bacterium.
PMCID: PMC2937395  PMID: 20601475
11.  Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella silvestris BL2▿  
Journal of Bacteriology  2010;192(14):3840-3841.
Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium.
PMCID: PMC2897342  PMID: 20472789
12.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) 
Ming, Ray | Hou, Shaobin | Feng, Yun | Yu, Qingyi | Dionne-Laporte, Alexandre | Saw, Jimmy H. | Senin, Pavel | Wang, Wei | Ly, Benjamin V. | Lewis, Kanako L. T. | Salzberg, Steven L. | Feng, Lu | Jones, Meghan R. | Skelton, Rachel L. | Murray, Jan E. | Chen, Cuixia | Qian, Wubin | Shen, Junguo | Du, Peng | Eustice, Moriah | Tong, Eric | Tang, Haibao | Lyons, Eric | Paull, Robert E. | Michael, Todd P. | Wall, Kerr | Rice, Danny W. | Albert, Henrik | Wang, Ming-Li | Zhu, Yun J. | Schatz, Michael | Nagarajan, Niranjan | Acob, Ricelle A. | Guan, Peizhu | Blas, Andrea | Wai, Ching Man | Ackerman, Christine M. | Ren, Yan | Liu, Chao | Wang, Jianmei | Wang, Jianping | Na, Jong-Kuk | Shakirov, Eugene V. | Haas, Brian | Thimmapuram, Jyothi | Nelson, David | Wang, Xiyin | Bowers, John E. | Gschwend, Andrea R. | Delcher, Arthur L. | Singh, Ratnesh | Suzuki, Jon Y. | Tripathi, Savarni | Neupane, Kabi | Wei, Hairong | Irikura, Beth | Paidi, Maya | Jiang, Ning | Zhang, Wenli | Presting, Gernot | Windsor, Aaron | Navajas-Pérez, Rafael | Torres, Manuel J. | Feltus, F. Alex | Porter, Brad | Li, Yingjun | Burroughs, A. Max | Luo, Ming-Cheng | Liu, Lei | Christopher, David A. | Mount, Stephen M. | Moore, Paul H. | Sugimura, Tak | Jiang, Jiming | Schuler, Mary A. | Friedman, Vikki | Mitchell-Olds, Thomas | Shippen, Dorothy E. | dePamphilis, Claude W. | Palmer, Jeffrey D. | Freeling, Michael | Paterson, Andrew H. | Gonsalves, Dennis | Wang, Lei | Alam, Maqsudul
Nature  2008;452(7190):991-996.
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2–5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.
PMCID: PMC2836516  PMID: 18432245
13.  A physical map of the papaya genome with integrated genetic map and genome sequence 
BMC Genomics  2009;10:371.
Papaya is a major fruit crop in tropical and subtropical regions worldwide and has primitive sex chromosomes controlling sex determination in this trioecious species. The papaya genome was recently sequenced because of its agricultural importance, unique biological features, and successful application of transgenic papaya for resistance to papaya ringspot virus. As a part of the genome sequencing project, we constructed a BAC-based physical map using a high information-content fingerprinting approach to assist whole genome shotgun sequence assembly.
The physical map consists of 963 contigs, representing 9.4× genome equivalents, and was integrated with the genetic map and genome sequence using BAC end sequences and a sequence-tagged high-density genetic map. The estimated genome coverage of the physical map is about 95.8%, while 72.4% of the genome was aligned to the genetic map. A total of 1,181 high quality overgo (overlapping oligonucleotide) probes representing conserved sequences in Arabidopsis and genetically mapped loci in Brassica were anchored on the physical map, which provides a foundation for comparative genomics in the Brassicales. The integrated genetic and physical map aligned with the genome sequence revealed recombination hotspots as well as regions suppressed for recombination across the genome, particularly on the recently evolved sex chromosomes. Suppression of recombination spread to the adjacent region of the male specific region of the Y chromosome (MSY), and recombination rates were recovered gradually and then exceeded the genome average. Recombination hotspots were observed at about 10 Mb away on both sides of the MSY, showing 7-fold increase compared with the genome wide average, demonstrating the dynamics of recombination of the sex chromosomes.
A BAC-based physical map of papaya was constructed and integrated with the genetic map and genome sequence. The integrated map facilitated the draft genome assembly, and is a valuable resource for comparative genomics and map-based cloning of agronomically and economically important genes and for sex chromosome research.
PMCID: PMC3224731  PMID: 19664231
14.  Conserved Daily Transcriptional Programs in Carica papaya 
Tropical Plant Biology  2008;1(3-4):236-245.
Most organisms have internal circadian clocks that mediate responses to daily environmental changes in order to synchronize biological functions to the correct times of the day. Previous studies have focused on plants found in temperate and sub-tropical climates, and little is known about the circadian transcriptional networks of plants that typically grow under conditions with relatively constant day lengths and temperatures over the year. In this study we conducted a genomic and computational analysis of the circadian biology of Carica papaya, a tropical tree. We found that predicted papaya circadian clock genes cycle with the same phase as Arabidopsis genes. The patterns of time-of-day overrepresentation of circadian-associated promoter elements were nearly identical across papaya, Arabidopsis, rice, and poplar. Evolution of promoter structure predicts the observed morning- and evening-specific expression profiles of the papaya PRR5 paralogs. The strong conservation of previously identified circadian transcriptional networks in papaya, despite its tropical habitat and distinct life-style, suggest that circadian timing has played a major role in the evolution of plant genomes, consistent with the selective pressure of anticipating daily environmental changes. Further studies could exploit this conservation to elucidate general design principles that will facilitate engineering plant growth pathways for specific environments.
Electronic supplementary material
The online version of this article (doi:10.1007/s12042-008-9020-3) contains supplementary material, which is available to authorized users.
PMCID: PMC2890329  PMID: 20671772
Carica papaya; Circadian clock; Cis-acting element; Diurnal
15.  Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 
Genome Biology  2008;9(11):R161.
Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation.
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.
We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.
Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
PMCID: PMC2614493  PMID: 19014707
16.  Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia 
Biology Direct  2008;3:26.
The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia.
We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins.
The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria.
This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.
PMCID: PMC2474590  PMID: 18593465
17.  An Archaeal Aerotaxis Transducer Combines Subunit I Core Structures of Eukaryotic Cytochrome c Oxidase and Eubacterial Methyl-Accepting Chemotaxis Proteins 
Journal of Bacteriology  1998;180(7):1642-1646.
Signal transduction in the archaeon Halobacterium salinarum is mediated by three distinct subfamilies of transducer proteins. Here we report the complete htrVIII gene sequence and present analysis of the encoded primary structure and its functional features. HtrVIII is a 642-amino-acid protein and belongs to halobacterial transducer subfamily B. At the N terminus, the protein contains six transmembrane segments that exhibit homology to the heme-binding sites of the eukaryotic cytochrome c oxidase. The C-terminal domain has high homology with the eubacterial methyl-accepting chemotaxis protein. The HtrVIII protein mediates aerotaxis: a strain with a deletion of the htrVIII gene loses aerotaxis, while an overproducing strain exhibits stronger aerotaxis. We also demonstrate that HtrVIII is a methyl-accepting protein and demethylates during the aerotaxis response.
PMCID: PMC107073  PMID: 9537358
18.  Sensory Rhodopsin II Transducer HtrII Is Also Responsible for Serine Chemotaxis in the Archaeon Halobacterium salinarum 
Journal of Bacteriology  1998;180(6):1600-1602.
Previously, we demonstrated that the methyl-accepting protein HtrII is the transducer for photoreceptor sensory rhodopsin II. Here, we provide experimental evidence that HtrII is also a chemotransducer. Using an agarose-in-plug bridge method, we show that an HtrII overexpression strain has a quicker response to serine than does an HtrII deletion strain. Furthermore, an in vivo flow assay demonstrates that the deletion strain is unable to modulate methylesterase activity after serine addition or photostimulation, while the overexpression strain shows distinct methanol peaks following both types of stimuli.
PMCID: PMC107067  PMID: 9515936
19.  Mechanism of Glycan Receptor Recognition and Specificity Switch for Avian, Swine, and Human Adapted Influenza Virus Hemagglutinins: A Molecular Dynamics Perspective 
Journal of the American Chemical Society  2009;131(47):17430-17442.
Hemagglutinins (HA’s) from duck, swine, and human influenza viruses have previously been shown to prefer avian and human glycan receptor analogues with distinct topological profiles, pentasaccharides LSTa (α-2,3 linkage) and LSTc (α-2,6 linkage), in comparative molecular dynamics studies. On the basis of detailed analyses of the dynamic motions of the receptor binding domains (RBDs) and interaction energy profiles with individual glycan residues, we have identified ∼30 residue positions in the RBD that present distinct profiles with the receptor analogues. Glycan binding constrained the conformational space sampling by the HA. Electrostatic steering appeared to play a key role in glycan binding specificity. The complex dynamic behaviors of the major SSE and trimeric interfaces with or without bound glycans suggested that networks of interactions might account for species specificity in these low affinity and high avidity (multivalent) interactions between different HA and glycans. Contact frequency, energetic decomposition, and H-bond analyses revealed species-specific differences in HA−glycan interaction profiles, not readily discernible from crystal structures alone. Interaction energy profiles indicated that mutation events at the set of residues such as 145, 156, 158, and 222 would favor human or avian receptor analogues, often through interactions with distal asialo-residues. These results correlate well with existing experimental evidence, and suggest new opportunities for simulation-based vaccine and drug development.
PMCID: PMC2782351  PMID: 19891427

Results 1-19 (19)