PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Identification of a novel human Rad51 variant that promotes DNA strand exchange 
Nucleic Acids Research  2008;36(10):3226-3234.
Rad51 plays a key role in the repair of DNA double-strand breaks through homologous recombination, which is the central process in the maintenance of genomic integrity. Five paralogs of the human Rad51 gene (hRad51) have been identified to date, including hRad51B, hRad51C, hRad51D, Xrcc2 and Xrcc3. In searches of additional hRad51 paralogs, we identified a novel hRad51 variant that lacked the sequence corresponding to exon 9 (hRad51-Δex9). The expected amino acid sequence of hRad51-Δex9 showed a frame-shift at codon 259, which resulted in a truncated C-terminus. RT-PCR analysis revealed that both hRad51 and hRad51-Δex9 were prominently expressed in the testis, but that there were subtle differences in tissue specificity. The hRad51-Δex9 protein was detected as a 31-kDa protein in the testis and localized at the nucleus. In addition, the hRad51-Δex9 protein showed a DNA-strand exchange activity comparable to that of hRad51. Taken together, these results indicate that hRad51-Δex9 promotes homologous pairing and DNA strand exchange in the nucleus, suggesting that alternative pathways in hRad51- or hRad51-Δex9-dependent manners exist for DNA recombination and repair.
doi:10.1093/nar/gkn171
PMCID: PMC2425499  PMID: 18417535
2.  Gene silencing in HIV-1 latency by polycomb repressive group 
Virology Journal  2011;8:179.
Background
The persistence of latently Human immunodeficiency virus-1 (HIV-1) infected cellular reservoirs in resting CD4+ T cells is a major obstacle to HIV-1 eradication. The detailed mechanism of HIV-1 latency remains unclear. We investigated histones and their post-translational modification associated with HIV-1 latency in novel HIV-1 latently infected cell lines established previously, NCHA cells.
Methods
To examine histones and their modification linked with HIV-1 latency, the expression profiles for core histone proteins and histone deacetylases (HDACs) in NCHA cells were characterized by RT-PCR, ELISA, and western blot. The levels of histone acetylation and methylation at histone H3 Lys9 (H3K9) and Lys27 (H3K27) in HIV-1 latently infected cells were analyzed by western blot and chromatin immunoprecipitation-sequencing (ChIP-seq).
Results
The expression levels for four core histone proteins (H2A, H2B, H3 and H4) and HDACs (HDAC1-8) in NCHA cells were not significantly different from those in their parental cells. Histone H3K9 and H3K27 acetylations in NCHA cells showed no difference in parental and NCHA cells, whereas the levels of di- and tri-methylation were increased in NCHA cells. The expression of EED which is a component of polycomb repressive complex 2 (PRC2), and BMI1 and RING2 which are constituents of PRC1, were upregulated in NCHA cells. In addition, more ubiquitylation at histone H2A was detected in NCHA cells.
Conclusions
Our results suggest that tri-methylation of histone H3K27 and H2A ubiquitylation via polycomb group protein may play a crucial role in epigenetic silencing accounting for HIV-1 latency in NCHA cells.
doi:10.1186/1743-422X-8-179
PMCID: PMC3094299  PMID: 21496352
3.  Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators 
Arthritis Research & Therapy  2009;11(6):R161.
Introduction
The role of adiponectin in the pathogenesis of arthritis is still controversial. This study was performed to examine whether adiponectin is involved in joint inflammation and destruction in rheumatoid arthritis (RA) in relation to the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs).
Methods
Synovial cells from RA patients were treated with adiponectin or interleukin (IL)-1β for 24 hours. The culture supernatant was collected and analyzed for the levels of IL-6, IL-8, prostaglandin E2 (PGE2), VEGF, and MMPs by enzyme-linked immunosorbent assay. The levels of adiponectin, VEGF, MMP-1, and MMP-13 in the joint fluids from 30 RA or osteoarthritis (OA) patients were also measured.
Results
Adiponectin at the concentration of 10 μg/mL stimulated the production of IL-6, IL-8, and PGE2 in RA fibroblast-like synoviocytes (FLSs), although the level of these was much lower than with 1 ng/mL IL-1β. However, adiponectin stimulated the production of VEGF, MMP-1, and MMP-13 at the same level as IL-1β. In addition, the level of adiponectin and MMP-1 in the joint fluid of RA patients was significantly higher than in OA patients. Adiponectin was positively correlated with VEGF in RA patients but not in OA patients, while the level of MMPs in joint fluid was not correlated with adiponectin in either RA or OA patients.
Conclusions
Adiponectin may play a significant role in the pathogenesis of RA by stimulating the production of VEGF and MMPs in FLSs, leading to joint inflammation and destruction, respectively.
doi:10.1186/ar2844
PMCID: PMC3003518  PMID: 19883500
4.  Cotransplanted Bone Marrow Derived Mesenchymal Stem Cells (MSC) Enhanced Engraftment of Hematopoietic Stem Cells in a MSC-dose Dependent Manner in NOD/SCID Mice 
Journal of Korean Medical Science  2006;21(6):1000-1004.
Transplantation of marrow-derived mesenchymal stem cells (MSCs), expanded by culture in addition to whole bone marrow, has been shown to enhance engraftment of human hematopoietic stem cells (HSCs). Our hypothesis was that there might be an optimum ratio range that could enhance engraftment. We examined the percent donor chimerism according to the ratio of HSCs to MSCs in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. We tested a series of ratios of co-transplanted CD34+-selected bone marrow cells, and marrow-derived MSCs into sublethally irradiated NOD/SCID mice. In all experiments, 1×105 bone marrow derived human CD34+ cells were administered to each mouse and human MSCs from different donors were infused concomitantly. We repeated the procedure three times and evaluated engraftment with flow cytometry four weeks after each transplantation. Serial ratios of HSCs to MSCs were 1:0, 1:1, 1:2 and 1:4, in the first experiment, 1:0, 1:1, 1:2, 1:4 and 1:8 in the second and 1:0, 1:1, 1:4, 1:8 and 1:16 in the third. Cotransplantation of HSCs and MSCs enhanced engraftment as the dose of MSCs increased. Our results suggest that the optimal ratio of HSCs and MSCs for cotransplantation might be in the range of 1:8-1:16; whereas, an excessive dose of MSCs might decrease engraftment efficiency.
doi:10.3346/jkms.2006.21.6.1000
PMCID: PMC2721918  PMID: 17179676
Hematopoietic Stem Cells; Mesenchymal Stem Cells; Transplantation; Mice, SCID; Engraftment

Results 1-4 (4)