Search tips
Search criteria

Results 1-25 (30)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Reorganisation of the Salivary Mucin Network by Dietary Components: Insights from Green Tea Polyphenols 
PLoS ONE  2014;9(9):e108372.
The salivary mucins that include MUC5B (gel-forming) and MUC7 (non-gel-forming) are major contributors to the protective mucus barrier in the oral cavity, and it is possible that dietary components may influence barrier properties. We show how one dietary compound, the green tea polyphenol epigallocatechin gallate (EGCG), can substantially alter the properties of both the polymeric MUC5B network and monomeric MUC7. Using rate-zonal centrifugation, MUC5B in human whole saliva and MUC5B purified from saliva sedimented faster in the presence of EGCG. The faster sedimentation by EGCG was shown to be greater with increasing MUC5B concentration. Particle tracking microrheology was employed to determine the viscosity of purified MUC5B solutions and showed that for MUC5B solutions of 200–1600 µg/mL, EGCG caused a significant increase in mucin viscosity, which was greater at higher MUC5B concentrations. Visualisation of the changes to the MUC5B network by EGCG was performed using atomic force microscopy, which demonstrated increased aggregation of MUC5B in a heterogeneous manner by EGCG. Using trypsin-resistant, high-molecular weight oligosaccharide-rich regions of MUC5B and recombinant N-terminal and C-terminal MUC5B proteins, we showed that EGCG causes aggregation at the protein domains of MUC5B, but not at the oligosaccharide-rich regions of the mucin. We also demonstrated that EGCG caused the majority of MUC7 in human whole saliva to aggregate. Furthermore, purified MUC7 also underwent a large increase in sedimentation rate in the presence of EGCG. In contrast, the green tea polyphenol epicatechin caused no change in the sedimentation rate of either MUC5B or MUC7 in human whole saliva. These findings have demonstrated how the properties of the mucin barrier can be influenced by dietary components. In the case of EGCG, these interactions may alter the function of MUC5B as a lubricant, contributing to the astringency (dry puckering sensation) of green tea.
PMCID: PMC4180932  PMID: 25264771
2.  Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins 
PLoS ONE  2014;9(8):e105302.
Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.
PMCID: PMC4146515  PMID: 25162539
3.  Muc5b Is Required for Airway Defense 
Nature  2013;505(7483):412-416.
Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them via mucociliary clearance (MCC)1,2. However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases1. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus1,3. Genetic variants are linked to diverse lung diseases4-6, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in the lungs. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally7. Apoptotic macrophages accumulated, phagocytosis was impaired, and IL-23 production was reduced inMuc5b−/− mice. By contrast, in Muc5b transgenic (Tg) mice, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum1,8. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%9-11. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.
PMCID: PMC4001806  PMID: 24317696
4.  Reassessment of the importance of mucins in determining sputum properties in cystic fibrosis 
Journal of Cystic Fibrosis  2014;13(3):260-266.
There is conflicting evidence about the importance of airway mucins (MUC5AC and MUC5B) in determining physical properties of sputum in cystic fibrosis (CF). We studied the effects of endogenous degradation of mucins on CF sputum elasticity and apparent mucin concentrations.
Elastic shear moduli (G′) and mucin concentrations in sputum of 12 CF patients were measured before and after incubation at 37 °C for 60 min.
G′ fell from a median of 5.98 to 4.70 Pa (p = 0.01). There were significant falls in MUC5AC (8.2 to 5.2 μg/ml, p = 0.02) and MUC5B (17.3 to 12.5 μg/ml, p = 0.02) over the same period, and associated decrease in molecular weight and size.
Sputum is not inert and degradation reduces apparent mucin concentrations and sputum elasticity. Even if care is taken to process samples rapidly, sputum may therefore differ from secretions retained in airways. Previous studies may have underestimated the role of mucins in CF sputum.
PMCID: PMC3994278  PMID: 24332705
Cystic fibrosis; Mucin; Proteolysis; Lung inflammation
5.  Assembly of the Respiratory Mucin MUC5B 
The Journal of Biological Chemistry  2014;289(23):16409-16420.
Background: Mucin polymer formation is a complex intracellular process.
Results: MUC5B N-terminal D3-domains form reversible pH-sensitive calcium mediated cross-links between linear MUC5B polymer chains.
Conclusion: Intracellular assembly of MUC5B generates disulfide-bonded polymers which form calcium mediated condensed networks in secretory granules.
Significance: This identifies a new model for mucin assembly that may be common to other polymeric mucins.
Mucins are essential components in mucus gels that form protective barriers at all epithelial surfaces, but much remains unknown about their assembly, intragranular organization, and post-secretion unfurling to form mucus. MUC5B is a major polymeric mucin expressed by respiratory epithelia, and we investigated the molecular mechanisms involved during its assembly. Studies of intact polymeric MUC5B revealed a single high affinity calcium-binding site, distinct from multiple low affinity sites on each MUC5B monomer. Self-diffusion studies with intact MUC5B showed that calcium binding at the protein site catalyzed reversible cross-links between MUC5B chains to form networks. The site of cross-linking was identified in the MUC5B D3-domain as it was specifically blocked by D3 peptide antibodies. Biophysical analysis and single particle EM of recombinant MUC5B N terminus (D1D2D′D3; NT5B) and subdomains (D1, D1-D2, D2-D′-D3, and D3) generated structural models of monomers and disulfide-linked dimers and suggested that MUC5B multimerizes by disulfide linkage between D3-domains to form linear polymer chains. Moreover, these analyses revealed reversible homotypic interactions of NT5B at low pH and in high calcium, between disulfide-linked NT5B dimers, but not monomers. These results enable a model of MUC5B to be derived, which predicts mechanisms of mucin intracellular assembly and storage, which may be common to the other major gel-forming polymeric mucins.
PMCID: PMC4047408  PMID: 24778189
Analytical Ultracentrifugation; Cystic Fibrosis; Mucin; Mucus; Recombinant Protein Expression; Single Particle Analysis; Goblet Cell
6.  A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis 
Development (Cambridge, England)  2014;141(7):1514-1525.
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.
PMCID: PMC3957375  PMID: 24598166
FoxA1; Infection; Mucins; Mucociliary; Otogelin; Xenopus epidermis
7.  Muc5ac: a critical component mediating the rejection of enteric nematodes 
The mucin Muc5ac is essential for the expulsion of Trichuris muris and other gut-dwelling nematodes.
De novo expression of Muc5ac, a mucin not normally expressed in the intestinal tract, is induced in the cecum of mice resistant to Trichuris muris infection. In this study, we investigated the role of Muc5ac, which is detected shortly before worm expulsion and is associated with the production of interleukin-13 (IL-13), in resistance to this nematode. Muc5ac-deficient mice were incapable of expelling T. muris from the intestine and harbored long-term chronic infections, despite developing strong TH2 responses. Muc5ac-deficient mice had elevated levels of IL-13 and, surprisingly, an increase in the TH1 cytokine IFN-γ. Because TH1 inflammation is thought to favor chronic nematode infection, IFN-γ was neutralized in vivo, resulting in an even stronger TH2-type immune response. Nevertheless, despite a more robust TH2 effector response, the Muc5ac-deficient mice remained highly susceptible to chronic T. muris infection. Importantly, human MUC5AC had a direct detrimental effect on nematode vitality. Moreover, the absence of Muc5ac caused a significant delay in the expulsion of two other gut-dwelling nematodes (Trichinella spiralis and Nippostrongylus brasiliensis). Thus, for the first time, we identify a single mucin, Muc5ac, as a direct and critical mediator of resistance during intestinal nematode infection.
PMCID: PMC3092342  PMID: 21502330
8.  Analysis of the cartilage proteome from three different mouse models of genetic skeletal diseases reveals common and discrete disease signatures 
Biology Open  2013;2(8):802-811.
Pseudoachondroplasia and multiple epiphyseal dysplasia are genetic skeletal diseases resulting from mutations in cartilage structural proteins. Electron microscopy and immunohistochemistry previously showed that the appearance of the cartilage extracellular matrix (ECM) in targeted mouse models of these diseases is disrupted; however, the precise changes in ECM organization and the pathological consequences remain unknown. Our aim was to determine the effects of matrilin-3 and COMP mutations on the composition and extractability of ECM components to inform how these detrimental changes might influence cartilage organization and degeneration.
Cartilage was sequentially extracted using increasing denaturants and the extraction profiles of specific proteins determined using SDS-PAGE/Western blotting. Furthermore, the relative composition of protein pools was determined using mass spectrometry for a non-biased semi-quantitative analysis.
Western blotting revealed changes in the extraction of matrilins, COMP and collagen IX in mutant cartilage. Mass spectrometry confirmed quantitative changes in the extraction of structural and non-structural ECM proteins, including proteins with roles in cellular processes such as protein folding and trafficking. In particular, genotype-specific differences in the extraction of collagens XII and XIV and tenascins C and X were identified; interestingly, increased expression of several of these genes has recently been implicated in susceptibility and/or progression of murine osteoarthritis.
We demonstrated that mutation of matrilin-3 and COMP caused changes in the extractability of other cartilage proteins and that proteomic analyses of Matn3 V194D, Comp T585M and Comp DelD469 mouse models revealed both common and discrete disease signatures that provide novel insight into skeletal disease mechanisms and cartilage degradation.
PMCID: PMC3744072  PMID: 23951406
Cartilage; Genetic skeletal disease; Proteomics; Pseudoachondroplasia; Multiple epiphyseal dysplasia
9.  Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection 
Gastroenterology  2010;138(5-10):1763-1771.e5.
Background & Aims
Hyperplasia of mucin-secreting intestinal goblet cells accompanies a number of enteric infections, including infections by nematode parasites. Nevertheless, the precise role of mucins in host defense in nematode infection is not known. We investigated the role of the mucin (Muc2) in worm expulsion and host immunity in a model of nematode infection.
Resistant (BALB/c, C57BL/6), susceptible (AKR), and Muc2-deficient mouse strains were infected with the nematode, Trichuris muris, and worm expulsion, energy status of the whipworms, changes in mucus/mucins, and inflammatory and immune responses were investigated after infection.
The increase in Muc2 production, observed exclusively in resistant mice, correlated with worm expulsion. Moreover, expulsion of the worms from the intestine was significantly delayed in the Muc2-deficient mice. Although a marked impairment in the development of periodic acid Schiff (PAS)–stained intestinal goblet cells was observed in Muc2-deficient mice, as infection progressed a significant increase in the number of PAS-positive goblet cells was observed in these mice. Surprisingly, an increase in Muc5ac, a mucin normally expressed in the airways and stomach, was observed after infection of only the resistant animals. Overall, the mucus barrier in the resistant mice was less permeable than that of susceptible mice. Furthermore, the worms isolated from the resistant mice had a lower energy status.
Mucins are an important component of innate defense in enteric infection; this is the first demonstration of the important functional contribution of mucins to host protection from nematode infection.
PMCID: PMC3466424  PMID: 20138044
Muc2; Goblet Cell; Enteric Infection; Host Resistance; Innate Immunity; ATP, adenosine triphosphate; BrdU, bromodeoxyuridine; IL-4, interleukin-4; KO, knockout; mMuc2, murine Muc2; PAS, periodic acid Schiff; Relm, resistin-like molecule; RT-PCR, reverse transcription–polymerase chain reaction; SCID, severe combined immunodeficient; Tff3, trefoil factor 3; TH, T helper; WT, wild-type
10.  Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier 
The polymeric mucin component of the intestinal mucus barrier changes during nematode infection to provide not only physical protection but also to directly affect pathogenic nematodes and aid expulsion. Despite this, the direct interaction of the nematodes with the mucins and the mucus barrier has not previously been addressed. We used the well-established Trichuris muris nematode model to investigate the effect on mucins of the complex mixture of immunogenic proteins secreted by the nematode called excretory/secretory products (ESPs). Different regimes of T. muris infection were used to simulate chronic (low dose) or acute (high dose) infection. Mucus/mucins isolated from mice and from the human intestinal cell line, LS174T, were treated with ESPs. We demonstrate that serine protease(s) secreted by the nematode have the ability to change the properties of the mucus barrier, making it more porous by degrading the mucin component of the mucus gel. Specifically, the serine protease(s) acted on the N-terminal polymerising domain of the major intestinal mucin Muc2, resulting in depolymerisation of Muc2 polymers. Importantly, the respiratory/gastric mucin Muc5ac, which is induced in the intestine and is critical for worm expulsion, was protected from the depolymerising effect exerted by ESPs. Furthermore, serine protease inhibitors (Serpins) which may protect the mucins, in particular Muc2, from depolymerisation, were highly expressed in mice resistant to chronic infection. Thus, we demonstrate that nematodes secrete serine protease(s) to degrade mucins within the mucus barrier, which may modify the niche of the parasite to prevent clearance from the host or facilitate efficient mating and egg laying from the posterior end of the parasite that is in intimate contact with the mucus barrier. However, during a TH2-mediated worm expulsion response, serpins, Muc5ac and increased levels of Muc2 protect the barrier from degradation by the nematode secreted protease(s).
Author Summary
Gastrointestinal parasitic worm infections cause significant morbidity, affecting up to a third of the world's populationand their domestic pets and livestock. Mucus, the gel-like material that blankets the surface of the intestine, forms a protective barrier that is an important part of our innate immune system. The whipworm Trichuris is closely associated with the intestinal mucus barrier. The major structural component of this barrier, large glycoproteins known as mucins play a significant role in the expulsion of these worms in a mouse model. Using mice that get longterm chronic infections and others able to expel the worms from the intestine, we uncover a novel role for products secreted by the worms. Enzymes secreted by whipworms can disrupt the mucin network that gives mucus its viscous properties. Moreover, we unravel that worm products are unable to degrade forms of mucins present in the mucus barrier during worm expulsion, suggesting that these enzymes may be released by the worm as part of its regime to improve its niche and survival in the host. However, the host is capable of producing mucins and other protective molecules that protect the mucus barrier from degradation and are detrimental to the viability of the worm.
PMCID: PMC3469553  PMID: 23071854
11.  Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates 
Fungal Biology  2012;116(9):1003-1012.
The ubiquitous filamentous fungus Aspergillus fumigatus secretes a number of allergens with protease activity and has been linked to a variety of allergic conditions such as Severe Asthma with Fungal Sensitization (SAFS) and Allergic Bronchopulmonary Aspergillosis (ABPA). However, it is unclear which allergen proteases are being secreted during fungal invasion and whether the local biological environment regulates their expression. Understanding the dynamic expression of allergen proteases during growth of A. fumigatus may lead to further characterisation of the pathogenesis of these disorders as well as improved standardisation in the commercial production of these allergens. Secretion of proteases during germination and early growth of A. fumigatus was investigated in response to various complex protein sources (pig lung homogenate, mucin or casein). Protease inhibitor studies demonstrated that A. fumigatus (AF293 strain) secretes predominately serine proteases during growth in pig lung based medium and mainly metalloproteases during growth in casein based medium but suppressed protease secretion in unmodified Vogel's minimal medium and secreted both types in mucin based medium. Analysis of gene transcription and protein identification by mass spectrometry showed that the matrix metalloprotease, Mep/Asp f 5 and the serine protease, Alp1/Asp f 13, were upregulated and secreted during growth in pig lung medium, whereas Alp1 was predominately expressed and secreted in mucin based medium. In casein medium, the matrix metalloprotease, Lap1, was also upregulated and secreted in addition to Mep and Alp1. These findings suggest that A. fumigatus is able to detect different complex proteins available as substrates in its environment and regulate protease secretion accordingly. There is a requirement for the standardisation of A. fumigatus allergen extracts used both in clinical diagnosis of A. fumigatus allergy and in research studies.
► Aspergillus fumigatus produces allergens with protease activity. ► Growth on protein based substrates induces the secretion of proteases. ► Mainly serine proteases secreted in response pig lung homogenate or mucin media. ► Predominately MMP secreted in response to casein media. ► Aspergillus fumigatus can sense and respond to changes in growth environment.
PMCID: PMC3605576  PMID: 22954343
Allergen; Culture; Fungal; Growth; Proteases; Secretion
12.  Loss of Matrilin 1 Does Not Exacerbate the Skeletal Phenotype in a Mouse Model of Multiple Epiphyseal Dysplasia Caused by a Matn3 V194D Mutation 
Arthritis and rheumatism  2012;64(5):1529-1539.
Mutations in matrilin 3 can result in multiple epiphyseal dysplasia (MED), a disease characterized by delayed and irregular bone growth and early-onset osteoarthritis. Although intracellular retention of the majority of mutant matrilin 3 was previously observed in a murine model of MED caused by a Matn3 V194D mutation, some mutant protein was secreted into the extracellular matrix. Thus, it was proposed that secretion of mutant matrilin 3 may be dependent on the formation of hetero-oligomers with matrilin 1. The aim of this study was to investigate the hypothesis that deletion of matrilin 1 would abolish the formation of matrilin 1/matrilin 3 hetero-oligomers, eliminate the secretion of mutant matrilin 3, and influence disease severity.
Mice with a Matn3 V194D mutation were crossed with Matn1-null mice, generating mice that were homozygous for V194D and null for matrilin 1. This novel mouse was used for in-depth phenotyping, while cartilage and chondrocytes were studied both histochemically and biochemically.
Endochondral ossification was not disrupted any further in mice with a double V194D mutation compared with mice with a single mutation. A similar proportion of mutant matrilin 3 was present in the extracellular matrix, and the amount of retained mutant matrilin 3 was not noticeably increased. Retained mutant matrilin 3 formed disulfide-bonded aggregates and caused the co-retention of matrilin 1.
We showed that secretion of matrilin 3 V194D mutant protein is not dependent on hetero-oligomerization with matrilin 1, and that the total ablation of matrilin 1 expression has no impact on disease severity in mice with MED. Mutant matrilin 3 oligomers form non-native disulfide-bonded aggregates through the misfolded A domain.
PMCID: PMC3374853  PMID: 22083516
Fibronectin (FN) is a prototypic adhesive glycoprotein that is widely expressed in extracellular matrices and body fluids. The fibronectin molecule is dimeric, and composed of a series of repeating polypeptide modules. A recombinant fragment of FN incorporating type III repeats 12-15, and including the alternatively-spliced type three connecting segment (IIICS), was found to bind Ni2+, Cu2+ and Zn2+ divalent cations, whereas a similar fragment lacking the IIICS did not. Mutation of two pairs of histidine residues in separate spliced regions of the IIICS reduced cation binding to near the level of the variant lacking the IIICS, suggesting a zinc finger-like mode of cation coordination. Analysis of native FNs purified from plasma or amniotic fluid revealed significant levels of zinc associated with those isoforms that contain the complete IIICS. Taken together, these data demonstrate that the IIICS region of FN is a novel zinc-binding module.
PMCID: PMC3345337  PMID: 17490871
fibronectin; zinc; IIICS region; cation-binding; alternative splicing
14.  Muc5b Is the Major Polymeric Mucin in Mucus from Thoroughbred Horses With and Without Airway Mucus Accumulation 
PLoS ONE  2011;6(5):e19678.
Mucus accumulation is a feature of inflammatory airway disease in the horse and has been associated with reduced performance in racehorses. In this study, we have analysed the two major airways gel-forming mucins Muc5b and Muc5ac in respect of their site of synthesis, their biochemical properties, and their amounts in mucus from healthy horses and from horses with signs of airway mucus accumulation. Polyclonal antisera directed against equine Muc5b and Muc5ac were raised and characterised. Immunohistochemical staining of normal equine trachea showed that Muc5ac and Muc5b are produced by cells in the submucosal glands, as well as surface epithelial goblet cells. Western blotting after agarose gel electrophoresis of airway mucus from healthy horses, and horses with mucus accumulation, was used to determine the amounts of these two mucins in tracheal wash samples. The results showed that in healthy horses Muc5b was the predominant mucin with small amounts of Muc5ac. The amounts of Muc5b and Muc5ac were both dramatically increased in samples collected from horses with high mucus scores as determined visually at the time of endoscopy and that this increase also correlated with increase number of bacteria present in the sample. The change in amount of Muc5b and Muc5ac indicates that Muc5b remains the most abundant mucin in mucus. In summary, we have developed mucin specific polyclonal antibodies, which have allowed us to show that there is a significant increase in Muc5b and Muc5ac in mucus accumulated in equine airways and these increases correlated with the numbers of bacteria.
PMCID: PMC3094342  PMID: 21602926
15.  A novel role for Gtb1p in glucose trimming of N-linked glycans 
Glycobiology  2009;19(12):1408-1416.
Glucosidase II (GluII) is a glycan-trimming enzyme active on nascent glycoproteins in the endoplasmic reticulum (ER). It trims the middle and innermost glucose residues (Glc2 and Glc1) from N-linked glycans. The monoglucosylated glycan produced by the first GluII trimming reaction is recognized by calnexin/calreticulin and serves as the signal for entry into this folding pathway. GluII is a heterodimer of α and β subunits corresponding to yeast Gls2p and Gtb1p, respectively. While Gls2p contains the glucosyl hydrolase active site, the Gtb1p subunit has previously been shown to be essential for the Glc1 trimming event. Here we demonstrate that Gtb1p also determines the rate of Glc2 trimming. In order to further dissect these activities we mutagenized a number of conserved residues across the protein. Our data demonstrate that both the MRH and G2B domains of Gtb1p contribute to the Glc2 trimming event but that the MRH domain is essential for Glc1 trimming.
PMCID: PMC4023292  PMID: 19542522
calnexin cycle; endoplasmic reticulum; ER quality control; glucosidase II; glycan processing
16.  Utility of Cystatin C to monitor renal function in Duchenne muscular dystrophy 
Muscle & nerve  2009;40(3):438-442.
Creatinine as a marker of renal function has limited value in Duchenne muscular dystrophy (DMD) because of reduced muscle mass. Alternative methods of assessing renal function are sorely needed. Cystatin C, a nonglycosylated protein unaffected by muscle mass, is potentially an ideal biomarker of nephrotoxicity for this population but requires validation.
75 subjects were recruited: 35 DMD (mean age 10.8 ± 5.4 years, corticosteroids n = 19, ambulatory n = 26), 29 healthy controls, 10 with renal disease, and one DMD with renal failure.
Cystatin C levels in DMD were normal irrespective of age, ambulation or corticosteroid treatment. Serum cystatin C was 0.67 ± 0.11 mg/L compared to normal controls 0.69 ± 0.09. mg/L. In these same individuals serum creatinine was severely reduced (0.27 ± 0.12 mg/dL) versus normals (0.75 ± 0.15 mg/dL, p < 0.01). In one DMD subject in renal failure, cystatin C was elevated.
This study demonstrates the potential value of cystatin C as a biomarker for monitoring renal function in DMD. Its applicability extends to other neuromuscular diseases.
PMCID: PMC2740988  PMID: 19623638
Duchenne muscular dystrophy; Cystatin C; serum creatinine; biomarker; renal function
17.  An unfolded protein response is the initial cellular response to the expression of mutant matrilin-3 in a mouse model of multiple epiphyseal dysplasia 
Cell Stress & Chaperones  2010;15(6):835-849.
Multiple epiphyseal dysplasia (MED) can result from mutations in matrilin-3, a structural protein of the cartilage extracellular matrix. We have previously shown that in a mouse model of MED the tibia growth plates were normal at birth but developed a progressive dysplasia characterised by the intracellular retention of mutant matrilin-3 and abnormal chondrocyte morphology. By 3 weeks of age, mutant mice displayed a significant decrease in chondrocyte proliferation and dysregulated apoptosis. The aim of this current study was to identify the initial post-natal stages of the disease. We confirmed that the disease phenotype is seen in rib and xiphoid cartilage and, like tibia growth plate cartilage is characterised by the intracellular retention of mutant matrilin-3. Gene expression profiling showed a significant activation of classical unfolded protein response (UPR) genes in mutant chondrocytes at 5 days of age, which was still maintained by 21 days of age. Interestingly, we also noted the upregulation of arginine-rich, mutated in early stage of tumours (ARMET) and cysteine-rich with EGF-like domain protein 2 (CRELD2) are two genes that have only recently been implicated in the UPR. This endoplasmic reticulum (ER) stress and UPR did not lead to increased chondrocyte apoptosis in mutant cartilage by 5 days of age. In an attempt to alleviate ER stress, mutant mice were fed with a chemical chaperone, 4-sodium phenylbutyrate (SPB). SPB at the dosage used had no effect on chaperone expression at 5 days of age but modestly decreased levels of chaperone proteins at 3 weeks. However, this did not lead to increased secretion of mutant matrilin-3 and in the long term did not improve the disease phenotype. We performed similar studies with a mouse model of Schmid metaphyseal chondrodysplasia, but again this treatment did not improve the phenotype.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-010-0193-y) contains supplementary material, which is available to authorized users.
PMCID: PMC3024081  PMID: 20428984
Matrilin-3; Chondrodysplasia; Mouse model; Unfolded protein response; Chemical chaperones; ARMET; CRELD2
18.  Ex Vivo Sputum Analysis Reveals Impairment of Protease-dependent Mucus Degradation by Plasma Proteins in Acute Asthma 
Rationale: Airway mucus plugs, composed of mucin glycoproteins mixed with plasma proteins, are an important cause of airway obstruction in acute severe asthma, and they are poorly treated with current therapies.
Objectives: To investigate mechanisms of airway mucus clearance in health and in acute severe asthma.
Methods: We collected airway mucus from patients with asthma and nonasthmatic control subjects, using sputum induction or tracheal aspiration. We used rheological methods complemented by centrifugation-based mucin size profiling and immunoblotting to characterize the physical properties of the mucus gel, the size profiles of mucins, and the degradation products of albumin in airway mucus.
Measurements and Main Results: Repeated ex vivo measures of size and entanglement of mucin polymers in airway mucus from nonasthmatic control subjects showed that the mucus gel is normally degraded by proteases and that albumin inhibits this degradation. In airway mucus collected from patients with asthma at various time points during acute asthma exacerbation, protease-driven mucus degradation was inhibited at the height of exacerbation but was restored during recovery. In immunoblots of human serum albumin digested by neutrophil elastase and in immunoblots of airway mucus, we found that albumin was a substrate of neutrophil elastase and that products of albumin degradation were abundant in airway mucus during acute asthma exacerbation.
Conclusions: Rheological methods complemented by centrifugation-based mucin size profiling of airway mucins in health and acute asthma reveal that mucin degradation is inhibited in acute asthma, and that an excess of plasma proteins present in acute asthma inhibits the degradation of mucins in a protease-dependent manner. These findings identify a novel mechanism whereby plasma exudation may impair airway mucus clearance.
PMCID: PMC2724713  PMID: 19423716
airway mucus; rheology; neutrophil elastase; plasma; asthma exacerbation
19.  Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? 
Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.
PMCID: PMC2636953  PMID: 18931053
mucus; mucin; innate immunity; proteomics; human tracheobronchial epithelial cell culture
20.  Targeted Induction of Endoplasmic Reticulum Stress Induces Cartilage Pathology 
PLoS Genetics  2009;5(10):e1000691.
Pathologies caused by mutations in extracellular matrix proteins are generally considered to result from the synthesis of extracellular matrices that are defective. Mutations in type X collagen cause metaphyseal chondrodysplasia type Schmid (MCDS), a disorder characterised by dwarfism and an expanded growth plate hypertrophic zone. We generated a knock-in mouse model of an MCDS–causing mutation (COL10A1 p.Asn617Lys) to investigate pathogenic mechanisms linking genotype and phenotype. Mice expressing the collagen X mutation had shortened limbs and an expanded hypertrophic zone. Chondrocytes in the hypertrophic zone exhibited endoplasmic reticulum (ER) stress and a robust unfolded protein response (UPR) due to intracellular retention of mutant protein. Hypertrophic chondrocyte differentiation and osteoclast recruitment were significantly reduced indicating that the hypertrophic zone was expanded due to a decreased rate of VEGF–mediated vascular invasion of the growth plate. To test directly the role of ER stress and UPR in generating the MCDS phenotype, we produced transgenic mouse lines that used the collagen X promoter to drive expression of an ER stress–inducing protein (the cog mutant of thyroglobulin) in hypertrophic chondrocytes. The hypertrophic chondrocytes in this mouse exhibited ER stress with a characteristic UPR response. In addition, the hypertrophic zone was expanded, gene expression patterns were disrupted, osteoclast recruitment to the vascular invasion front was reduced, and long bone growth decreased. Our data demonstrate that triggering ER stress per se in hypertrophic chondrocytes is sufficient to induce the essential features of the cartilage pathology associated with MCDS and confirm that ER stress is a central pathogenic factor in the disease mechanism. These findings support the contention that ER stress may play a direct role in the pathogenesis of many connective tissue disorders associated with the expression of mutant extracellular matrix proteins.
Author Summary
Mutations in genes for extracellular matrix proteins are generally thought to exert their pathogenic effects because of resulting defects in extracellular matrix. However, it is becoming increasingly clear that such mutations can also have significant effects inside the cell due to the induction of ER stress. Mutations in type X collagen cause a dwarfism called metaphyseal chondrodysplasia type Schmid. A gene targeted mouse model expressing mutant type X collagen exhibited an expanded hypertrophic zone of the growth plate and significant increases in cellular ER stress, as noted previously. VEGF expression was disrupted leading to decreases in the rate of vascular invasion. To directly assess the role of elevated ER stress in disease pathogenesis, transgenic mouse lines expressing an exogenous, ER stress–inducing protein (cog mutant of thyroglobulin—Tgcog) targeted to hypertrophic chondrocytes were generated. Mice expressing Tgcog protein showed elevated ER stress, an expanded hypertrophic zone, and reduced bone growth demonstrating that elevated ER stress and the resultant UPR is the principal pathogenic mechanism causing this cartilage pathology. It is possible that therapeutic strategies aimed at alleviating ER stress may be beneficial in this and other connective tissue diseases caused by mutant extracellular matrix genes.
PMCID: PMC2757901  PMID: 19834559
21.  Endothelial Function in HIV-infected Persons 
Several reports have suggested an increased risk of coronary disease in HIV-infected patients on protease inhibitors (PI). Impaired endothelium-dependent vasodilation is a putative surrogate marker of coronary atherosclerotic disease.
This study evaluated the effect of HIV infection and antiretroviral treatment on endothelial vasomotor function using brachial artery flow-mediated dilation (FMD). 75 HIV-infected patients were compared to 223 presumed HIV-uninfected control patients.
HIV-infected subjects had significantly impaired FMD compared to controls (7.3 ± 4.4% versus 11.1 ± 6.4%, p<0.0001). When adjusted for smoking, gender and BMI the difference remained statistically significant between the two groups (p<0.0001). In a cross-sectional analysis of the HIV-infected patients, we found significant associations between FMD and active intravenous drug use, hazardous drinking, HIV viral load and alpha HDL triglyceride levels, but not PI therapy. In multivariate analysis, only current intravenous drug use and lower alpha HDL triglyceride level were significantly associated with FMD.
HIV-infected patients have significant impairment of endothelial function and this impairment is worse among those with elevated levels of HIV replication, particularly intravenous drug users.
PMCID: PMC2737346  PMID: 16586393
22.  Identification of salivary mucin MUC7 binding proteins from Streptococcus gordonii 
BMC Microbiology  2009;9:163.
The salivary mucin MUC7 (previously known as MG2) can adhere to various strains of streptococci that are primary colonizers and predominant microorganisms of the oral cavity. Although there is a growing interest in interaction between oral pathogens and salivary mucins, studies reporting the specific binding sites on the bacteria are rather limited. Identification and characterization of the specific interacting proteins on the bacterial cell surface, termed adhesins, are crucial to further understand host-pathogen interactions.
We demonstrate here, using purified MUC7 to overlay blots of SDS-extracts of Streptococcus gordonii cell surface proteins, 4 MUC7-binding bands, with apparent molecular masses of 62, 78, 84 and 133 kDa from the Streptococcus gordonii strain, PK488. Putative adhesins were identified by in-gel digestion and subsequent nanoLC-tandem mass spectrometry analysis of resultant peptides. The 62 kDa and 84 kDa bands were identified as elongation factor (EF) Tu and EF-G respectively. The 78 kDa band was a hppA gene product; the 74 kDa oligopeptide-binding lipoprotein. The 133 kDa band contained two proteins; alpha enolase and DNA-directed RNA polymerase, beta' subunit. Some of these proteins, for example alpha enolase are expected to be intracellular, however, flow cytometric analysis confirmed its location on the bacterial surface.
Our data demonstrated that S. gordonii expressed a number of putative MUC7 recognizing proteins and these contribute to MUC7 mucin binding of this streptococcal strain.
PMCID: PMC2775355  PMID: 19671172
The Journal of biological chemistry  2007;282(17):12791-12795.
We have generated an antiserum to the variable domain of mouse collagen XXVII, a recently discovered novel member of the fibrillar collagen family. Collagen XXVII protein is first detectable in the mouse at embryonic day 12.5. By E14.5 days, the protein localises to cartilage, developing dermis, cornea, inner limiting membrane of the retina and major arteries of the heart. However, at E18.5 days, collagen XXVII protein is no longer apparent in most tissues and appears restricted mainly to cartilage where expression continues into adulthood. Type XXVII collagen immunolocalises to 10 nm thick non-striated fibrils that are distinct from fibrils formed by the classical fibrillar collagens. The transient nature of its expression and unusual fibrillar structure suggest that collagen XXVII plays a developmental role distinct from those of the classical fibrillar collagens.
PMCID: PMC2688011  PMID: 17331945
24.  MUC5B Is the Major Mucin in the Gel Phase of Sputum in Chronic Obstructive Pulmonary Disease 
Rationale: Overproduction of mucus is a contributory factor in the progression of chronic obstructive pulmonary disease (COPD). The polymeric mucins are major macromolecules in the secretion. Therefore, we hypothesized that the polymeric mucin composition or properties may be different in the sputum from individuals with COPD and smokers without airflow obstruction.
Objectives: To determine the major polymeric mucins in COPD sputum and whether these are different in the sputum from individuals with COPD compared with that from smokers without airflow obstruction.
Methods: The polymeric mucin composition of sputum from patients with COPD and smokers without airflow obstruction was analyzed by Western blotting analysis. The tissue localization of the mucins was determined by immunohistochemistry, and their size distribution was analyzed by rate–zonal centrifugation.
Measurements and Main Results: MUC5AC and MUC5B were the major mucins. MUC5AC was the predominant mucin in the smoker group, whereas MUC5B was more abundant from the patients with COPD, with a significant difference in the ratio of MUC5B to MUC5AC (P = 0.004); this ratio was correlated with FEV1 in the COPD group (r = 0.63; P = 0.01). The lower-charged glycosylated form of MUC5B was more predominant in COPD (P = 0.012). No significant associations were observed with respect to sex, age, or pack-year history. In both groups, MUC5AC was produced by surface epithelial cells and MUC5B by submucosal gland cells. Finally, there was a shift toward smaller mucins in the COPD group.
Conclusions: Our data indicate that there are differences in mucin amounts and properties between smokers with and without COPD. Further studies are needed to examine how this may impact disease progression.
PMCID: PMC2643221  PMID: 18776153
chronic obstructive pulmonary disease; mucus; mucin; pathophysiology
25.  Reduced cell proliferation and increased apoptosis are significant pathological mechanisms in a murine model of mild pseudoachondroplasia resulting from a mutation in the C-terminal domain of COMP 
Human molecular genetics  2007;16(17):2072-2088.
Pseudoachondroplasia (PSACH) is one of the more common skeletal dysplasias and results from mutations in cartilage oligomeric matrix protein (COMP). Most COMP mutations identified to date cluster in the TSP3 repeat region of COMP and the mutant protein is retained in the rough endoplasmic reticulum (rER) of chondrocytes and may result in increased cell death. In contrast, the pathomolecular mechanism of PSACH resulting from C-terminal domain COMP mutations remain largely unknown. This study describes the generation and analysis of a murine model of mild PSACH resulting from a p.Thr583Met mutation in the C-terminal globular domain (CTD) of COMP. Mutant animals are normal at birth, but grow slower than their wild-type littermates and by 9 weeks of age they have mild short-limb dwarfism. Furthermore, by 16 months of age mutant animals exhibit severe degeneration of articular cartilage, which is consistent with early onset osteoarthritis seen in PSACH patients. In the growth plates of mutant mice the chondrocyte columns are sparser and poorly organized. Mutant COMP is secreted into the extracellular matrix, but its localization is disrupted along with the distribution of several COMP-binding proteins. Although mutant COMP is not retained within the rER there is an unfolded protein/cell stress response and chondrocyte proliferation is significantly reduced, while apoptosis is both increased and spatially dysregulated. Overall, these data suggests a mutation in the CTD of COMP exerts a dominant-negative effect on both intra- and extracellular processes. This ultimately affects the morphology and proliferation of growth plate chondrocytes, eventually leading to chondrodysplasia and reduced long bone growth.
PMCID: PMC2674228  PMID: 17588960

Results 1-25 (30)