PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (65)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Stability of the DSM-5 Section III Pathological Personality Traits and their Longitudinal Associations with Psychosocial Functioning in Personality Disordered Individuals 
Journal of abnormal psychology  2014;124(1):199-207.
This study was conducted to establish (a) the stability of the DSM-5 Section III personality disorder (PD) traits, (b) whether these traits predict future psychosocial functioning, and (c) whether changes in traits track with changes in psychosocial functioning across time. Ninety-three outpatients (61% Female) diagnosed with at least one PD completed patient-report measures at two time-points (M time between assessments = 1.44 years), including the Personality Inventory for the DSM-5 and several measures of psychosocial functioning. Effect sizes of rank-order and mean-level change were calculated. In addition, Time 1 traits were used to predict functioning measures at Time 2. Finally, latent change score models were estimated for DSM-5 Section III traits and functioning measures, and correlations among latent change scores were calculated to establish the relationship between change in traits and functional outcomes. Findings demonstrated that the DSM-5 Section III traits were highly stable in terms of normative (i.e., mean-level) change and rank-order stability over the course of the study. Furthermore, traits prospectively predicted psychosocial functioning. However, at the individual level traits and functioning were not entirely static over the study, and change in individuals’ functioning tracked with changes in trait levels. These findings demonstrate that the DSM-5 Section III traits are highly stable consistent with the definition of PD, prospectively predictive of psychosocial functioning, and dynamically associated with functioning over time. This study provides important evidence in support of the DSM-5 Section III PD model.
doi:10.1037/abn0000018
PMCID: PMC4333076  PMID: 25384070
Personality Disorders; Longitudinal Stability; DSM-5 Section III; Personality Disorder Traits
2.  Tfap2a-dependent changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 gene dosage 
Disease Models & Mechanisms  2014;8(1):31-43.
Failure of facial prominence fusion causes cleft lip and palate (CL/P), a common human birth defect. Several potential mechanisms can be envisioned that would result in CL/P, including failure of prominence growth and/or alignment as well as a failure of fusion of the juxtaposed epithelial seams. Here, using geometric morphometrics, we analyzed facial outgrowth and shape change over time in a novel mouse model exhibiting fully penetrant bilateral CL/P. This robust model is based upon mutations in Tfap2a, the gene encoding transcription factor AP-2α, which has been implicated in both syndromic and non-syndromic human CL/P. Our findings indicate that aberrant morphology and subsequent misalignment of the facial prominences underlies the inability of the mutant prominences to fuse. Exencephaly also occured in some of the Tfap2a mutants and we observed additional morphometric differences that indicate an influence of neural tube closure defects on facial shape. Molecular analysis of the CL/P model indicates that Fgf signaling is misregulated in the face, and that reducing Fgf8 gene dosage can attenuate the clefting pathology by generating compensatory changes. Furthermore, mutations in either Tfap2a or Fgf8 increase variance in facial shape, but the combination of these mutations restores variance to normal levels. The alterations in variance provide a potential mechanistic link between clefting and the evolution and diversity of facial morphology. Overall, our findings suggest that CL/P can result from small gene-expression changes that alter the shape of the facial prominences and uncouple their coordinated morphogenesis, which is necessary for normal fusion.
doi:10.1242/dmm.017616
PMCID: PMC4283648  PMID: 25381013
Craniofacial; TFAP2A; AP-2α; BOFS; Branchio-oculofacial syndrome; Cleft lip/palate; Geometric morphometrics; Fgf signaling pathway
3.  The Ptch1DL mouse: a new model to study lambdoid craniosynostosis and basal cell nevus syndrome associated skeletal defects 
Genesis (New York, N.Y. : 2000)  2013;51(10):677-689.
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis.
doi:10.1002/dvg.22416
PMCID: PMC3918964  PMID: 23897749
Hedgehog; Craniosynostosis; Polydactyly; Craniofacial Defects; Omphalocele
4.  Superinfection Exclusion in Alphabaculovirus Infections Is Concomitant with Actin Reorganization 
Journal of Virology  2014;88(6):3548-3556.
ABSTRACT
Superinfection exclusion is the ability of an established virus to interfere with a second virus infection. This effect was studied in vitro during lepidopteran-specific nucleopolyhedrovirus (genus Alphabaculovirus, family Baculoviridae) infection. Homologous interference was detected in Sf9 cells sequentially infected with two genotypes of Autographa californica multiple nucleopolyhedrovirus (AcMNPV), each one expressing a different fluorescent protein. This was a progressive process in which a sharp decrease in the signs of infection caused by the second virus was observed, affecting not only the number of coinfected cells observed, but also the level of protein expression due to the second virus infection. Superinfection exclusion was concurrent with reorganization of cytoplasmic actin to F-actin in the nucleus, followed by budded virus production (16 to 20 h postinfection). Disruption of actin filaments by cell treatment with cytochalasin D resulted in a successful second infection. Protection against heterologous nucleopolyhedrovirus infection was also demonstrated, as productive infection of Sf9 cells by Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) was inhibited by prior infection with AcMNPV, and vice versa. Finally, coinfected cells were observed following inoculation with mixtures of these two phylogenetically distant nucleopolyhedroviruses—AcMNPV and SfMNPV—but at a frequency lower than predicted, suggesting interspecific virus interference during infection or replication. The temporal window of infection is likely necessary to maintain genotypic diversity that favors virus survival but also permits dual infection by heterospecific alphabaculoviruses.
IMPORTANCE Infection of a cell by more than one virus particle implies sharing of cell resources. We show that multiple infection, by closely related or distantly related baculoviruses, is possible only during a brief window of time that allows additional virus particles to enter an infected cell over a period of ca. 16 h but then blocks multiple infections as newly generated virus particles begin to leave the infected cell. This temporal window has two important consequences. First, it allows multiple genotypes to almost simultaneously infect cells within the host, thus generating genetically diverse virus particles for transmission. Second, it provides a mechanism by which different viruses replicating in the same cell nucleus can exchange genetic material, so that the progeny viruses may be a mosaic of genes from each of the parental viruses. This opens a completely new avenue of research into the evolution of these insect pathogens.
doi:10.1128/JVI.02974-13
PMCID: PMC3957928  PMID: 24403587
5.  Analysis of TFAP2A mutations in Branchio-Oculo-Facial Syndrome indicates functional complexity within the AP-2α DNA-binding domain 
Human Molecular Genetics  2013;22(16):3195-3206.
Multiple lines of evidence indicate that the AP-2 transcription factor family has an important regulatory function in human craniofacial development. Notably, mutations in TFAP2A, the gene encoding AP-2α, have been identified in patients with Branchio-Oculo-Facial Syndrome (BOFS). BOFS is an autosomal-dominant trait that commonly presents with facial clefting, eye defects and branchial skin anomalies. Examination of multiple cases has suggested either simple haploinsufficiency or more complex genetic causes for BOFS, especially as the clinical manifestations are variable, with no clear genotype–phenotype correlation. Mutations occur throughout TFAP2A, but mostly within conserved sequences within the DNA contact domain of AP-2α. However, the consequences of the various mutations for AP-2α protein function have not been evaluated. Therefore, it remains unclear if all BOFS mutations result in similar changes to the AP-2α protein or if they each produce specific alterations that underlie the spectrum of phenotypes. Here, we have investigated the molecular consequences of the mutations that localize to the DNA-binding region. We show that although individual mutations have different effects on DNA binding, they all demonstrate significantly reduced transcriptional activities. Moreover, all mutant derivatives have an altered nuclear:cytoplasmic distribution compared with the predominantly nuclear localization of wild-type AP-2α and several can exert a dominant-negative activity on the wild-type AP-2α protein. Overall, our data suggest that the individual TFAP2A BOFS mutations can generate null, hypomorphic or antimorphic alleles and that these differences in activity, combined with a role for AP-2α in epigenetic events, may influence the resultant pathology and the phenotypic variability.
doi:10.1093/hmg/ddt173
PMCID: PMC3723307  PMID: 23578821
6.  A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis 
BACKGROUND
The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function.
RESULTS
This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities.
CONCLUSIONS
This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human.
doi:10.1002/dvdy.23969
PMCID: PMC4027977  PMID: 23559552
zebrafish; craniofacial development; Morpholino; branchial arches; neural crest derived cartilages
7.  A Chrysodeixis chalcites Single-Nucleocapsid Nucleopolyhedrovirus Population from the Canary Islands Is Genotypically Structured To Maximize Survival 
Applied and Environmental Microbiology  2013;79(24):7709-7718.
A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus wild-type isolate from the Canary Islands, Spain, named ChchSNPV-TF1 (ChchTF1-wt), appears to have great potential as the basis for a biological insecticide for control of the pest. An improved understanding of the genotypic structure of this wild-type strain population should facilitate the selection of genotypes for inclusion in a bioinsecticidal product. Eight genetically distinct genotypes were cloned in vitro: ChchTF1-A to ChchTF1-H. Quantitative real-time PCR (qPCR) analysis confirmed that ChchTF1-A accounted for 36% of the genotypes in the wild-type population. In bioassays, ChchTF1-wt occlusion bodies (OBs) were significantly more pathogenic than any of the component single-genotype OBs, indicating that genotype interactions were likely responsible for the pathogenicity phenotype of wild-type OBs. However, the wild-type population was slower killing and produced higher OB yields than any of the single genotypes alone. These results strongly suggested that the ChchTF1-wt population is structured to maximize its transmission efficiency. Experimental OB mixtures and cooccluded genotype mixtures containing the most abundant and the rarest genotypes, at frequencies similar to those at which they were isolated, revealed a mutualistic interaction that restored the pathogenicity of OBs. In OB and cooccluded mixtures containing only the most abundant genotypes, ChchTF1-ABC, OB pathogenicity was even greater than that of wild-type OBs. The ChchTF1-ABC cooccluded mixture killed larvae 33 h faster than the wild-type population and remained genotypically and biologically stable throughout five successive passages in vivo. In conclusion, the ChchTF1-ABC mixture shows great potential as the active ingredient of a bioinsecticide to control C. chalcites in the Canary Islands.
doi:10.1128/AEM.02409-13
PMCID: PMC3837827  PMID: 24096419
8.  Mixture-Amount Design and Response Surface Modeling to Assess the Effects of Flavonoids and Phenolic Acids on Developmental Performance of Anastrepha ludens 
Journal of Chemical Ecology  2014;40(3):297-306.
Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments.
Electronic supplementary material
The online version of this article (doi:10.1007/s10886-014-0404-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s10886-014-0404-6
PMCID: PMC3972442  PMID: 24619732
Anastrepha ludens; Larval performance; Phenolic compounds; Response-surface modeling; Secondary compounds; Tephritidae; Diptera
9.  Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis 
The Journal of Clinical Investigation  2014;124(4):1660-1671.
Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutations in hedgehog acyltransferase (Hhat) and patched1 (Ptch1) exhibited perturbations in the SHH gradient during frontonasal development, which led to hypoplastic nasal process outgrowth, epithelial seam persistence, and cleft lip. Further investigation revealed that enhanced SHH signaling restricts canonical WNT signaling in the lambdoidal region by promoting expression of genes encoding WNT inhibitors. Moreover, reduction of canonical WNT signaling perturbed p63/interferon regulatory factor 6 (p63/IRF6) signaling, resulting in increased proliferation and decreased cell death, which was followed by persistence of the epithelial seam and cleft lip. Consistent with our results, mutations in genes that disrupt SHH and WNT signaling have been identified in both mice and humans with cleft lip. Collectively, our data illustrate that altered SHH signaling contributes to the etiology and pathogenesis of cleft lip through antagonistic interactions with other gene regulatory networks, including the canonical WNT and p63/IRF6 signaling pathways.
doi:10.1172/JCI72688
PMCID: PMC3973078  PMID: 24590292
10.  Relationship between Trough Plasma and Epithelial Lining Fluid Concentrations of Voriconazole in Lung Transplant Recipients 
Trough (predose) voriconazole concentrations in plasma and pulmonary epithelial lining fluid (ELF) of lung transplant recipients receiving oral voriconazole preemptive treatment were determined. The mean (± standard deviation [SD]) ELF/plasma ratio was 12.5 ± 6.3. A strong positive linear relationship was noted between trough plasma and ELF voriconazole concentrations (r2 = 0.87), suggesting the feasibility of using trough plasma voriconazole concentration as a surrogate to estimate the corresponding concentration in ELF of lung transplant recipients.
doi:10.1128/AAC.00942-13
PMCID: PMC3754345  PMID: 23817382
11.  Pilot study of the impact sacroiliac joint manipulation has on walking kinematics using motion analysis technology 
Journal of Chiropractic Medicine  2013;12(3):143-152.
Objective
The purpose of this study was to evaluate the feasibility of engaging in a series of larger studies measuring the effect of sacroiliac joint manipulation on walking kinematics using motion analysis technology.
Methods
Twelve college students engaged in a baseline 90-second gait analysis at 1.5 mph using infrared VICON cameras. Following this, they underwent a prone heel comparison test for functional leg length inequality. Upon examination, participants were then classified as follows: left short leg, right short leg, or no short leg. Participants in each of the 2 short leg branches of this study were then randomized to receive either chiropractic manipulative therapy to the posterior superior iliac spine on the short limb side or no manipulation. Recruitment was ongoing for this pilot study until 1 participant was recruited in each of the following 5 comparative study groups: left short leg—manipulation, left short leg—no manipulation (control 1), right short leg—manipulation, right short leg—no manipulation (control 2), and no short leg (control 3). All participants then underwent another 90-second gait analysis. Data were then grouped and submitted to a blinded biomechanist to determine if there were any unique biomechanical differences between the groups.
Results
No statistically significant differences were measured because of this being a pilot study with a small sample size.
Conclusions
The data from this study indicate that a series of larger studies with this design is feasible.
doi:10.1016/j.jcm.2013.05.001
PMCID: PMC3838716  PMID: 24396314
Manipulation, chiropractic; Gait; Biomechanics; Locomotion
12.  Distinct Requirements for Cranial Ectoderm and Mesenchyme-Derived Wnts in Specification and Differentiation of Osteoblast and Dermal Progenitors 
PLoS Genetics  2014;10(2):e1004152.
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.
Author Summary
Craniofacial abnormalities are relatively common congenital birth defects, and the Wnt signaling pathway and its effectors have key roles in craniofacial development. Wntless/Gpr177 is required for the efficient secretion of all Wnt ligands and maps to a region that contains SNPs strongly associated with reduced bone mass, and heterozygous deletion is associated with facial dysmorphology. Here we test the role of specific sources of secreted Wnt proteins during early stages of craniofacial development and obtained dramatic craniofacial anomalies. We found that the overlying cranial surface ectoderm Wnts generate an instructive cue of Wnt signaling for skull bone and skin cell fate selection and transcription of additional Wnts in the underlying mesenchyme. Once initiated, mesenchymal Wnts may maintain Wnt signal transduction and function in an autocrine manner during differentiation of skull bones and skin. These results highlight how Wnt ligands from two specific tissue sources are integrated for normal craniofacial patterning and can contribute to complex craniofacial abnormalities.
doi:10.1371/journal.pgen.1004152
PMCID: PMC3930509  PMID: 24586192
13.  Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico 
Parasites & Vectors  2014;7:55.
Background
The larvicidal efficacy of the naturally derived insecticide spinosad, for control of immature stages of Anopheles albimanus and associated culicids, was compared to that of synthetic and biological larvicides. Effects on non-target insects were also determined.
Methods
A field trial was performed in replicated temporary pools during the rainy season, in southern Mexico. Pools were treated with 10 ppm a.i. spinosad (Tracer 480SC), Bti granules applied at 2 kg/ha (VectoBac WDG, ABG-6511), and 100 ml/ha temephos (50 EC), or an untreated control. Numbers of immature mosquitoes, and aquatic insects in pools were monitored for 20 weeks.
Results
Samples of immature mosquitoes comprised approximately 10% An. albimanus, 70% Culex spp. (mostly Cx. melanoconion and Cx. coronator) and 20% Uranotaenia lowii. The most effective larvicides were spinosad and temephos that eliminated An. albimanus in 16 out of 20 post-treatment samples, or 9 weeks of continuous control of immature stages, respectively. These larvicides resulted in 15 and 5 weeks of elimination of Culex spp., respectively, or 20 and 4 weeks of continuous elimination of U. lowii, respectively. Bti treatment provided little consistent control. Aquatic insects were recorded comprising 3 orders, 20 families, 40 genera and 44 species. Shannon diversity index values (H’) for aquatic insects were highest in the control (0.997) and Bti (0.974) treatments, intermediate in the spinosad treatment (0.638) and lowest in the temephos treatment (0.520). Severely affected non-target insects in the spinosad and temephos treated pools were predatory Coleoptera, Hemiptera and Odonata, which in the case of spinosad was likely due to the high concentration applied. Bti had little effect on aquatic insects.
Conclusions
The spinosad treatment retained larvicidal activity for markedly longer than expected. Spinosad is likely to be an effective tool for control of anopheline and other pool-breeding mosquitoes in tropical regions. Non-target effects of spinosad on aquatic insects merit further study, but were likely related to the concentration of the product used.
doi:10.1186/1756-3305-7-55
PMCID: PMC3915226  PMID: 24479683
14.  Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico 
Parasites & Vectors  2014;7:41.
Background
The abundance, richness and diversity of mosquitoes and aquatic insects associated with their oviposition sites were surveyed along eight states of the Pacific coast of Mexico. Diversity was estimated using the Shannon index (H’), similarity measures and cluster analysis.
Methods
Oviposition sites were sampled during 2–3 months per year, over a three year period. Field collected larvae and pupae were reared and identified to species following adult emergence. Aquatic insects present at oviposition sites were also collected, counted and identified to species or genus.
Results
In total, 15 genera and 74 species of mosquitoes were identified: Anopheles pseudopunctipennis, An. albimanus and Aedes aegypti were the most abundant and widely-distributed species, representing 47% of total mosquito individuals sampled. New species records for certain states are reported. Anopheline diversity was lowest in Sinaloa state (H’ = 0.54) and highest in Chiapas (H’ = 1.61) and Michoacán (H’ = 1.56), whereas culicid diversity was lowest in Michoacán (H’ = 1.93), Colima (H’ = 1.95), Sinaloa (H’ = 1.99) and Jalisco (H’ = 2.01) and highest in Chiapas (H’ = 2.66). In total, 10 orders, 57 families, 166 genera and 247 species of aquatic insects were identified in samples. Aquatic insect diversity was highest in Chiapas, Oaxaca and Michoacán (H’ = 3.60-3.75). Mosquito larval/pupal abundance was not correlated with that of predatory Coleoptera and Hemiptera.
Conclusion
This represents the first update on the diversity and geographic distribution of the mosquitoes and aquatic insects of Mexico in over five decades. This information has been cataloged in Mexico’s National Biodiversity Information System (SNIB-CONABIO) for public inspection.
doi:10.1186/1756-3305-7-41
PMCID: PMC3923424  PMID: 24450800
15.  Correction: MicroRNA-17-92, a Direct Ap-2α Transcriptional Target, Modulates T-Box Factor Activity in Orofacial Clefting 
PLoS Genetics  2013;9(12):10.1371/annotation/90602bc3-5052-49ac-a7fb-33210d7c8b4d.
doi:10.1371/annotation/90602bc3-5052-49ac-a7fb-33210d7c8b4d
PMCID: PMC3867558
16.  Expression of a Peroral Infection Factor Determines Pathogenicity and Population Structure in an Insect Virus 
PLoS ONE  2013;8(11):e78834.
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.
doi:10.1371/journal.pone.0078834
PMCID: PMC3818493  PMID: 24223853
17.  Ectodermal-derived Endothelin1 is required for patterning the distal and intermediate domains of the mouse mandibular arch 
Developmental biology  2012;371(1):47-56.
Morphogenesis of the vertebrate head relies on proper dorsal-ventral (D-V) patterning of neural crest cells (NCC) within the pharyngeal arches. Endothelin-1 (Edn1)-induced signaling through the endothelin-A receptor (Ednra) is crucial for cranial NCC patterning within the mandibular portion of the first pharyngeal arch, from which the lower jaw arises. Deletion of Edn1, Ednra or endothelin-converting enzyme in mice causes perinatal lethality due to severe craniofacial birth defects. These include homeotic transformation of mandibular arch-derived structures into more maxillary-like structures, indicating a loss of NCC identity. All cranial NCCs express Ednra whereas Edn1 expression is limited to the overlying ectoderm, core paraxial mesoderm and pharyngeal pouch endoderm of the mandibular arch as well as more caudal arches. To define the developmental significance of Edn1 from each of these layers, we used Cre/loxP technology to inactivate Edn1 in a tissue-specific manner. We show that deletion of Edn1 in either the mesoderm or endoderm alone does not result in cellular or molecular changes in craniofacial development. However, ectodermal deletion of Edn1 results in craniofacial defects with concomitant changes in the expression of early mandibular arch patterning genes. Importantly, our results also both define for the first time in mice an intermediate mandibular arch domain similar to the one defined in zebrafish and show that this region is most sensitive to loss of Edn1. Together, our results illustrate an integral role for ectoderm-derived Edn1 in early arch morphogenesis, particularly in the intermediate domain.
doi:10.1016/j.ydbio.2012.08.003
PMCID: PMC3470875  PMID: 22902530
neural crest cell; conditional knockout; mouse; endothelin; craniofacial
18.  The sf32 Unique Gene of Spodoptera frugiperda Multiple Nucleopolyhedrovirus (SfMNPV) Is a Non-Essential Gene That Could Be Involved in Nucleocapsid Organization in Occlusion-Derived Virions 
PLoS ONE  2013;8(10):e77683.
A recombinant virus lacking the sf32 gene (Sf32null), unique to the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV), was generated by homologous recombination from a bacmid comprising the complete viral genome (Sfbac). Transcriptional analysis revealed that sf32 is an early gene. Occlusion bodies (OBs) of Sf32null contained 62% more genomic DNA than viruses containing the sf32 gene, Sfbac and Sf32null-repair, although Sf32null DNA was three-fold less infective when injected in vivo. Sf32null OBs were 18% larger in diameter and contained 17% more nucleocapsids within ODVs than those of Sfbac. No significant differences were detected in OB pathogenicity (50% lethal concentration), speed-of-kill or budded virus production in vivo. In contrast, the production of OBs/larva was reduced by 39% in insects infected by Sf32null compared to those infected by Sfbac. The SF32 predicted protein sequence showed homology (25% identity, 44% similarity) to two adhesion proteins from Streptococcus pyogenes and a single N-mirystoylation site was predicted. We conclude that SF32 is a non-essential protein that could be involved in nucleocapsid organization during ODV assembly and occlusion, resulting in increased numbers of nucleocapsids within ODVs.
doi:10.1371/journal.pone.0077683
PMCID: PMC3813766  PMID: 24204916
19.  Complete Genome Sequences of Five Chrysodeixis chalcites Nucleopolyhedrovirus Genotypes from a Canary Islands Isolate 
Genome Announcements  2013;1(5):e00873-13.
The Chrysodeixis chalcites single nucleopolyhedrovirus (ChchSNPV) infects and kills C. chalcites larvae, an important pest of banana crops in the Canary Islands. Five genotypes present in the most prevalent and widespread isolate in the Canary Islands were sequenced, providing genetic data relevant to the genotypic and phenotypic diversity of this virus.
doi:10.1128/genomeA.00873-13
PMCID: PMC3813185  PMID: 24158555
20.  Deletion Genotypes Reduce Occlusion Body Potency but Increase Occlusion Body Production in a Colombian Spodoptera frugiperda Nucleopolyhedrovirus Population 
PLoS ONE  2013;8(10):e77271.
A Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.
doi:10.1371/journal.pone.0077271
PMCID: PMC3792916  PMID: 24116220
21.  MicroRNA-17-92, a Direct Ap-2α Transcriptional Target, Modulates T-Box Factor Activity in Orofacial Clefting 
PLoS Genetics  2013;9(9):e1003785.
Among the most common human congenital anomalies, cleft lip and palate (CL/P) affects up to 1 in 700 live births. MicroRNA (miR)s are small, non-coding RNAs that repress gene expression post-transcriptionally. The miR-17-92 cluster encodes six miRs that have been implicated in human cancers and heart development. We discovered that miR-17-92 mutant embryos had severe craniofacial phenotypes, including incompletely penetrant CL/P and mandibular hypoplasia. Embryos that were compound mutant for miR-17-92 and the related miR-106b-25 cluster had completely penetrant CL/P. Expression of Tbx1 and Tbx3, the DiGeorge/velo-cardio-facial (DGS) and Ulnar-mammary syndrome (UMS) disease genes, was expanded in miR-17-92 mutant craniofacial structures. Both Tbx1 and Tbx3 had functional miR seed sequences that mediated gene repression. Analysis of miR-17-92 regulatory regions uncovered conserved and functional AP-2α recognition elements that directed miR-17-92 expression. Together, our data indicate that miR-17-92 modulates expression of critical T-box transcriptional regulators during midface development and is itself a target of Bmp-signaling and the craniofacial pioneer factor AP-2α. Our data are the first genetic evidence that an individual miR or miR cluster is functionally important in mammalian CL/P.
Author Summary
CL/P are very common birth defects in humans. The genetic mechanism underlying CL/P pathogenesis is poorly understood. MiRs, small non-coding RNAs that function to post-transcriptionally regulate gene expression, have been identified as pivotal modulators of various developmental events and diseases. To date, there is no individual miR or miR cluster that has been identified as functionally essential in mammalian CL/P. Here, we have discovered that deletion of miR-17-92 cluster in mice results in craniofacial malformations including CL/P. Importantly, MIR-17-92 is located on a critical human chromosome region associated with 13q deletion syndrome, a chromosomal disorder that presents with defects including CL/P, suggesting the advantages of our animal model to study human disease. Moreover, our work demonstrated that miR-17-92 cluster directly repressed T-box factors, which have critical functions during craniofacial development. We further showed that miR-17-92 was directly activated by Bmp-signaling and transcription factor AP-2α. Together, our work identified a novel miR-mediated transcriptional network underlying CL/P, providing new insights into craniofacial developmental biology.
doi:10.1371/journal.pgen.1003785
PMCID: PMC3777996  PMID: 24068957
22.  Pulmonary arterial remodeling in chronic obstructive pulmonary disease is lobe dependent 
Pulmonary Circulation  2013;3(3):665-674.
Pulmonary arterial remodeling has been demonstrated in patients with severe chronic obstructive pulmonary disease (COPD), but it is not known whether lobar heterogeneity of remodeling occurs. Furthermore, the relationship between pulmonary hypertension (PH) and pulmonary arterial remodeling in COPD has not been established. Muscular pulmonary arterial remodeling in arteries 0.10–0.25 mm in diameter was assessed in COPD-explanted lungs and autopsy controls. Remodeling was quantified as the percentage wall thickness to vessel diameter (%WT) using digital image analysis. Repeat measures mixed-effects remodeling for %WT was performed according to lobar origin (upper and lower), muscular pulmonary arterial size (small, medium, and large), and echocardiography-based pulmonary arterial pressure (no PH, mild PH, and moderate-to-severe PH). Lobar perfusion and emphysema indices were determined from ventilation-perfusion and computed tomography scans, respectively. Overall, %WT was greater in 42 subjects with COPD than in 5 control subjects (). Within the COPD group, %WT was greater in the upper lobes () and in the small muscular pulmonary arteries (). Lobar differences were most pronounced in medium and large arteries. Lobar emphysema index was not associated with arterial remodeling. However, there was a significant positive relationship between the lobar perfusion index and pulmonary arterial remodeling (). The presence of PH on echocardiography showed only a trend to a small effect on lower lobe remodeling. The pattern of pulmonary arterial remodeling in COPD is complicated and lobe dependent. Differences in regional blood flow partially account for the lobar heterogeneity of pulmonary arterial remodeling in COPD.
doi:10.1086/674339
PMCID: PMC4070801  PMID: 24618551
emphysema; pathology; pulmonary circulation; pulmonary hypertension; regional blood flow.
23.  Gender-Mediated Differences in Vertical Transmission of a Nucleopolyhedrovirus 
PLoS ONE  2013;8(8):e70932.
With the development of sensitive molecular techniques for detection of low levels of asymptomatic pathogens, it becoming clear that vertical transmission is a common feature of some insect pathogenic viruses, and likely to be essential to virus survival when opportunities for horizontal transmission are unfavorable. Vertical transmission of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) is common in natural populations of S. exigua. To assess whether gender affected transgenerational virus transmission, four mating group treatments were performed using healthy and sublethally infected insects: i) healthy males (H♂)×healthy females (H♀); ii) infected males (I♂)×healthy females (H♀); iii) healthy males (H♂)×infected females (I♀) and iv) infected males (I♂)×infected females (I♀). Experimental adults and their offspring were analyzed by qPCR to determine the prevalence of infection. Both males and females were able to transmit the infection to the next generation, although female-mediated transmission resulted in a higher prevalence of infected offspring. Male-mediated venereal transmission was half as efficient as maternally-mediated transmission. Egg surface decontamination studies indicated that the main route of transmission is likely transovarial rather than transovum. Both male and female offspring were infected by their parents in similar proportions. Incorporating vertically-transmitted genotypes into virus-based insecticides could provide moderate levels of transgenerational pest control, thereby extending the periods between bioinsecticide applications.
doi:10.1371/journal.pone.0070932
PMCID: PMC3733637  PMID: 23940671
24.  Analagous Population Structures for Two Alphabaculoviruses Highlight a Functional Role for Deletion Mutants 
A natural Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolate from Florida shares a strikingly similar genotypic composition to that of a natural Spodoptera frugiperda MNPV (SfMNPV) isolate from Nicaragua. Both isolates comprise a high proportion of large-deletion genotypes that lack genes that are essential for viral replication or transmission. To determine the likely origins of such genotypically similar population structures, we performed genomic and functional analyses of these genotypes. The homology of nucleotides in the deleted regions was as high as 79%, similar to those of other colinear genomic regions, although some SfMNPV genes were not present in SeMNPV. In addition, no potential consensus sequences were shared between the deletion flanking sequences. These results indicate an evolutionary mechanism that independently generates and sustains deletion mutants within each virus population. Functional analyses using different proportions of complete and deletion genotypes were performed with the two viruses in mixtures of occlusion bodies (OBs) or co-occluded virions. Ratios greater than 3:1 of complete/deletion genotypes resulted in reduced pathogenicity (expressed as median lethal dose), but there were no significant changes in the speed of kill. In contrast, OB yields increased only in the 1:1 mixture. The three phenotypic traits analyzed provide a broader picture of the functional significance of the most extensively deleted SeMNPV genotype and contribute toward the elucidation of the role of such mutants in baculovirus populations.
doi:10.1128/AEM.03021-12
PMCID: PMC3568584  PMID: 23204420
25.  Overlapping Expression Patterns and Redundant Roles for AP-2 Transcription Factors in the Developing Mammalian Retina 
Background
We have previously shown that the transcription factor AP-2α (Tcfap2a) is expressed in postmitotic developing amacrine cells in the mouse retina. Although retina-specific deletion of Tcfap2a did not affect retinogenesis, two other family members, AP-2β and AP-2γ, showed expression patterns similar to AP-2α.
Results
Here we show that, in addition to their highly overlapping expression patterns in amacrine cells, AP-2α and AP-2β are also co-expressed in developing horizontal cells. AP-2γ expression is restricted to amacrine cells, in a subset that is partially distinct from the AP-2α/β-immunopositive population. To address possible redundant roles for AP-2α and AP-2β during retinogenesis, Tcfap2a/b-deficient retinas were examined. These double mutants showed a striking loss of horizontal cells and an altered staining pattern in amacrine cells that were not detected upon deletion of either family member alone.
Conclusions
These studies have uncovered critical roles for AP-2 activity in retinogenesis, delineating the overlapping expression patterns of Tcfap2a, Tcfap2b, and Tcfap2c in the neural retina, and revealing a redundant requirement for Tcfap2a and Tcfap2b in horizontal and amacrine cell development.
doi:10.1002/dvdy.23762
PMCID: PMC3700368  PMID: 22411557
AP-2 transcription factors; retinal development; horizontal cell; amacrine cell; Tcfap2a/b double mutant; redundant roles

Results 1-25 (65)