Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Aerobic Fitness is Associated with Gray Matter Volume and White Matter Integrity in Multiple Sclerosis 
Brain research  2009;1341C:41-51.
Alterations in gray and white matter have been well documented in individuals with multiple sclerosis. Severity and extent of such brain tissue damage have been associated with cognitive impairment, disease duration and neurological disability, making quantitative indices of tissue damage important markers of disease progression. In this study, we investigated the association between cardiorespiratory fitness and measures of gray matter atrophy and white matter integrity. Employing a voxel-based approach to analyses of gray matter and white matter, we specifically examined whether higher levels of fitness in multiple sclerosis participants were associated with preserved gray matter volume and integrity of white matter. We found a positive association between cardiorespiratory fitness and regional gray matter volumes and higher focal fractional anisotropy values. Statistical mapping revealed that higher levels of fitness were associated with greater gray matter volume in the midline cortical structures including the medial frontal gyrus, anterior cingulate cortex and the precuneus. Further, we also found increasing levels of fitness were associated with higher fractional anisotropy in the left thalamic radiation and right anterior corona radiata. Both preserved gray matter volume and white-matter tract integrity were associated with better performance on measures of processing speed. Taken together, these results suggest that fitness exerts a prophylactic influence on the cerebral atrophy observed early on preserving neuronal integrity in multiple sclerosis, thereby reducing long-term disability.
PMCID: PMC2884046  PMID: 19560443
Cortical atrophy; normal appearing gray matter; normal appearing white matter; cardiorespiratory fitness; processing speed; relapsing-remitting multiple sclerosis; neuroplasticity
2.  Age-related differences in the involvement of the prefrontal cortex in attentional control 
Brain and cognition  2009;71(3):328-335.
We investigated the relative involvement of cortical regions supporting attentional control in older and younger adults during performance on a modified version of the Stroop task. Participants were exposed to two different types of incongruent trials. One of these, an incongruent-ineligible condition, produces conflict at the non-response level, while the second, an incongruent-eligible condition, produces conflict at both non-response and response levels of information processing. Greater attentional control is needed to perform the incongruent-eligible condition compared to other conditions. We examined the cortical recruitment associated with this task in an event-related functional magnetic resonance imaging paradigm in twenty-five older and twenty-five younger adults. Our results indicated that while younger adults demonstrated an increase in the activation of cortical regions responsible for maintaining attentional control in response to increased levels of conflict, such sensitivity and flexibility of the cortical regions to increased attentional control demands was absent in older adults. These results suggest a limitation in older adults’ capabilities for flexibly recruiting the attentional network in response to increasing attentional demands.
PMCID: PMC2783271  PMID: 19699019
attentional control; aging; fMRI; flexibility; Stroop task; interference; inhibition
3.  A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children 
Brain research  2010;1358:172-183.
Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether higher- and lower-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, higher-fit children showed greater bilateral hippocampal volumes and superior relational memory task performance compared to lower-fit children. Hippocampal volume was also positively associated with performance on the relational but not the item memory task. Furthermore, bilateral hippocampal volume was found to mediate the relationship between fitness level (VO2 max) and relational memory. No relationship between aerobic fitness, nucleus accumbens volume, and memory was reported, which strengthens the hypothesized specific effect of fitness on the hippocampus. The findings are the first to indicate that aerobic fitness may relate to the structure and function of the preadolescent human brain.
PMCID: PMC3953557  PMID: 20735996
Brain; Children; Exercise; Hippocampus; MRI; Physical activity
4.  Neurobiological markers of exercise-related brain plasticity in older adults 
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
PMCID: PMC3544982  PMID: 23123199
exercise; aging; functional connectivity; fMRI; default mode network; aerobic fitness; growth factors
5.  Aging Brain from a Network Science Perspective: Something to Be Positive About? 
PLoS ONE  2013;8(11):e78345.
To better understand age differences in brain function and behavior, the current study applied network science to model functional interactions between brain regions. We observed a shift in network topology whereby for older adults subcortical and cerebellar structures overlapping with the Salience network had more connectivity to the rest of the brain, coupled with fragmentation of large-scale cortical networks such as the Default and Fronto-Parietal networks. Additionally, greater integration of the dorsal medial thalamus and red nucleus in the Salience network was associated with greater satisfaction with life for older adults, which is consistent with theoretical predictions of age-related increases in emotion regulation that are thought to help maintain well-being and life satisfaction in late adulthood. In regard to cognitive abilities, greater ventral medial prefrontal cortex coherence with its topological neighbors in the Default Network was associated with faster processing speed. Results suggest that large-scale organizing properties of the brain differ with normal aging, and this perspective may offer novel insight into understanding age-related differences in cognitive function and well-being.
PMCID: PMC3819386  PMID: 24223147
6.  The association between aerobic fitness and executive function is mediated by prefrontal cortex volume 
Brain, Behavior, and Immunity  2011;26(5):811-819.
Aging is marked by a decline in cognitive function, which is often preceded by losses in gray matter volume. Fortunately, higher cardiorespiratory fitness (CRF) levels are associated with an attenuation of age-related losses in gray matter volume and a reduced risk for cognitive impairment. Despite these links, we have only a rudimentary understanding of whether fitness-related increases in gray matter volume lead to elevated cognitive function. In this cross-sectional study, we examined whether the association between higher aerobic fitness levels and elevated executive function was mediated by greater gray matter volume in the prefrontal cortex (PFC). One hundred and forty-two older adults (mean age = 66.6 years) completed structural magnetic resonance imaging (MRI) scans, CRF assessments, and performed Stroop and spatial working memory (SPWM) tasks. Gray matter volume was assessed using an optimized voxel-based morphometry approach. Consistent with our predictions, higher fitness levels were associated with (a) better performance on both the Stroop and SPWM tasks, and (b) greater gray matter volume in several regions, including the dorsolateral PFC (DLPFC). Volume of the right inferior frontal gyrus and precentral gyrus mediated the relationship between CRF and Stroop interference while a non-overlapping set of regions bilaterally in the DLPFC mediated the association between CRF and SPWM accuracy. These results suggest that specific regions of the DLPFC differentially relate to inhibition and spatial working memory. Thus, fitness may influence cognitive function by reducing brain atrophy in targeted areas in healthy older adults.
PMCID: PMC3321393  PMID: 22172477
cardiorespiratory fitness; executive function; voxel-based morphometry; cortical volume; prefrontal cortex; mediation
7.  Caudate Nucleus Volume Mediates the Link between Cardiorespiratory Fitness and Cognitive Flexibility in Older Adults 
Journal of Aging Research  2012;2012:939285.
The basal ganglia play a central role in regulating the response selection abilities that are critical for mental flexibility. In neocortical areas, higher cardiorespiratory fitness levels are associated with increased gray matter volume, and these volumetric differences mediate enhanced cognitive performance in a variety of tasks. Here we examine whether cardiorespiratory fitness correlates with the volume of the subcortical nuclei that make up the basal ganglia and whether this relationship predicts cognitive flexibility in older adults. Structural MRI was used to determine the volume of the basal ganglia nuclei in a group of older, neurologically healthy individuals (mean age 66 years, N = 179). Measures of cardiorespiratory fitness (VO2max), cognitive flexibility (task switching), and attentional control (flanker task) were also collected. Higher fitness levels were correlated with higher accuracy rates in the Task Switching paradigm. In addition, the volume of the caudate nucleus, putamen, and globus pallidus positively correlated with Task Switching accuracy. Nested regression modeling revealed that caudate nucleus volume was a significant mediator of the relationship between cardiorespiratory fitness, and task switching performance. These findings indicate that higher cardiorespiratory fitness predicts better cognitive flexibility in older adults through greater grey matter volume in the dorsal striatum.
PMCID: PMC3415086  PMID: 22900181
8.  Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory 
Brain and Behavior  2012;2(1):32-41.
Aerobic exercise is a promising form of prevention for cognitive decline; however, little is known about the molecular mechanisms by which exercise and fitness impacts the human brain. Several studies have postulated that increased regional brain volume and function are associated with aerobic fitness because of increased vascularization rather than increased neural tissue per se. We tested this position by examining the relationship between cardiorespiratory fitness and N-acetylaspartate (NAA) levels in the right frontal cortex using magnetic resonance spectroscopy. NAA is a nervous system specific metabolite found predominantly in cell bodies of neurons. We reasoned that if aerobic fitness was predominantly influencing the vasculature of the brain, then NAA levels should not vary as a function of aerobic fitness. However, if aerobic fitness influences the number or viability of neurons, then higher aerobic fitness levels might be associated with greater concentrations of NAA. We examined NAA levels, aerobic fitness, and cognitive performance in 137 older adults without cognitive impairment. Consistent with the latter hypothesis, we found that higher aerobic fitness levels offset an age-related decline in NAA. Furthermore, NAA mediated an association between fitness and backward digit span performance, suggesting that neuronal viability as measured by NAA is important in understanding fitness-related cognitive enhancement. Since NAA is found exclusively in neural tissue, our results indicate that the effect of fitness on the human brain extends beyond vascularization; aerobic fitness is associated with neuronal viability in the frontal cortex of older adults.
PMCID: PMC3343297  PMID: 22574272
Aging; brain; exercise; fitness; human; N-acetylaspartate; working memory
9.  Basal Ganglia Volume Is Associated with Aerobic Fitness in Preadolescent Children 
Developmental Neuroscience  2010;32(3):249-256.
The present investigation is the first to explore the association between childhood aerobic fitness and basal ganglia structure and function. Rodent research has revealed that exercise influences the striatum by increasing dopamine signaling and angiogenesis. In children, higher aerobic fitness levels are associated with greater hippocampal volumes, superior performance on tasks of attentional and interference control, and elevated event-related brain potential indices of executive function. The present study used magnetic resonance imaging to investigate if higher-fit and lower-fit 9- and 10-year-old children exhibited differential volumes of other subcortical brain regions, specifically the basal ganglia involved in attentional control. The relationship between aerobic fitness, dorsal and ventral striatum volumes and performance on an attention and inhibition Eriksen flanker task was also examined. The results indicated that higher-fit children showed superior flanker task performance compared to lower-fit children. Higher-fit children also showed greater volumes of the dorsal striatum, and dorsal striatum volume was negatively associated with behavioral interference. The results support the claim that the dorsal striatum is involved in cognitive control and response resolution and that these cognitive processes vary as a function of aerobic fitness. No relationship was found between aerobic fitness, the volume of the ventral striatum and flanker performance. The findings suggest that increased childhood aerobic fitness is associated with greater dorsal striatal volumes and that this is related to enhanced cognitive control. Because children are becoming increasingly overweight, unhealthy and unfit, understanding the neurocognitive benefits of an active lifestyle during childhood has important public health and educational implications.
PMCID: PMC3696376  PMID: 20693803
Brain; Development; Exercise; MRI; Physical activity; Neurocognition; Neuroimaging; Striatum
10.  BDNF is Associated With Age-Related Decline in Hippocampal Volume 
Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood.
PMCID: PMC3069644  PMID: 20392958
brain-derived neurotrophic factor; hippocampus; human; brain; caudate nucleus; aging
11.  Resting Hippocampal Blood Flow, Spatial Memory and Aging 
Brain research  2009;1315C:119.
Aging is accompanied by a general deterioration of fluid cognitive processes and a reduction in resting cerebral blood flow (CBF). While the two phenomena have been observed independently, it is uncertain whether individual differences in cerebral blood flow are reliably associated with cognitive functioning in older adults. Furthermore, previous studies have concentrated primarily on gross measures of cognition and global gray matter CBF, leaving open the possibility that perfusion of specific brain regions may relate differentially to distinct cognitive domains. The present study sought to provide a more focused treatment of CBF and cognitive function in the context of aging by investigating the relationships among aging, spatial memory and resting hippocampal blood flow, both between and within younger and older adult groups. Blood flow was quantified using a novel Flow-Enhanced Signal Intensity (FENSI) technique which provides a localized, functionally-relevant measure of volumetric flow across a given unit area. As expected, we found that aging was associated with poorer spatial memory and reduced resting CBF. Moreover, hippocampal blood flow was positively correlated with spatial memory performance in the older adult group, suggesting that increased blood flow to the hippocampus is associated with superior memory performance in older adults. These results demonstrate a region-specific CBF—cognition relationship and thereby offer new insight into the complex connection between the aging brain and behavior.
PMCID: PMC2822086  PMID: 20026320
hippocampus; cerebral blood flow; brain perfusion; cognition; memory; aging
12.  Top-down attentional control in spatially coincident stimuli enhances activity in both task-relevant and task-irrelevant regions of cortex 
Behavioural brain research  2008;197(1):186-197.
Models of selective attention predict that focused attention to spatially contiguous stimuli may result in enhanced activity in areas of cortex specialized for processing task-relevant and task-irrelevant information. We examined this hypothesis by localizing color-sensitive areas (CSA) and word and letter sensitive areas of cortex and then examining modulation of these regions during performance of a modified version of the Stroop task in which target and distractors are spatially coincident. We report that only the incongruent condition with the highest cognitive demand showed increased activity in CSA relative to other conditions, indicating an attentional enhancement in target processing areas. We also found an enhancement of activity in one region sensitive to word/letter processing during the most cognitively demanding incongruent condition indicating greater processing of the distractor dimension. Correlations with performance revealed that top-down modulation during the task was critical for effective filtering of irrelevant information in conflict conditions. These results support predictions made by models of selective attention and suggest an important mechanism of top-down attentional control in spatially contiguous stimuli.
PMCID: PMC2845993  PMID: 18804123
Attentional control; Top-down modulation; Stroop task; Color-sensitive; Visual word form area
13.  Cardiorespiratory Fitness and Attentional Control in the Aging Brain 
A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the Stroop task, we examined whether higher levels of cardiorespiratory fitness were associated with an increase in activation in cortical regions responsible for imposing attentional control along with an up-regulation of activity in sensory brain regions that process task-relevant representations. Higher fitness levels were associated with better behavioral performance and an increase in the recruitment of prefrontal and parietal cortices in the most challenging condition, thus providing evidence that cardiorespiratory fitness is associated with an increase in the recruitment of the anterior processing regions. There was a top-down modulation of extrastriate visual areas that process both task-relevant and task-irrelevant attributes relative to the baseline. However, fitness was not associated with differential activation in the posterior processing regions, suggesting that fitness enhances attentional function by primarily influencing the neural circuitry of anterior cortical regions. This study provides novel evidence of a differential association of fitness with anterior and posterior brain regions, shedding further light onto the neural changes accompanying cardiorespiratory fitness.
PMCID: PMC3024830  PMID: 21267428
cardiorespiratory fitness; Stroop task; cognitive and attentional control

Results 1-13 (13)